PDF Publication Title:
Text from PDF Page: 015
ll OPEN ACCESS Marcus, Y. (2009). Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370. Ma ̨ czka, M., Ptak, M., and Macalik, L. (2004). Infrared and Raman studies of phase transitions in metal–organic frameworks of [(CH3)2NH2] [M(HCOO)3] with M=Zn, Fe. Vib. Spectrosc. 71, 98–104. Naveed, A., Yang, H., Shao, Y., Yang, J., Yang, J., Yanna, N., Liu, J., Shi, S., Zhang, L., Ye, A., et al. (2019). A highly reversible Zn anode with intrinsically safe OrganicElectrolyte for long- cycle-life batteries. Adv. Mater. 31, 1900668. Okpalugo, T., Papakonstantinou, P., Murphy, H., McLaughlin, J., and Brown, N. (2005). High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43, 153–161. Ouasri, A., Rhandour, A., Dhamelincourt, M., Dhamelincourt, P., and Mazzah, A. (2002). Vibrational study of (CH3)4NSbCl6 and [(CH3)4N] 2SiF6. Spectrochim. Acta A 58, 2779–2788. Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K.S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., et al. (2016). Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039. Slater, M.D., Kim, D., Lee, E., Doeff, M., and Johnson, C.S. (2013). Sodium-ion batteries. Adv. Funct. Mater. 23, 3255. Sun, Q. (2009). The Raman OH stretching bands of liquid water. Vib. Spectrosc. 51, 213–217. Suo, L., Borodin, O., Gao, T., Olguin, M., Ho, J., Fan, X., Luo, C., Wang, C., and Xu, K. (2015). ‘‘Water-in-salt’’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943. Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., and Wang, C. (2014). Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033. Wessells, C., Peddada, S., Huggins, R., and Cui, Y. (2011). Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11, 5421–5425. Winter, M., Besenhard, J.O., Spahr, M.E., and Nova ́ k, P. (1998). Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725–763. Wu, X., Lu, W., Ou, W., Caumon, M.C., and Dubessy, J. (2017a). Temperature and salinity effects on the Raman scattering cross section of the water OH-stretching vibration band in NaCl aqueous solutions from 0 to 300 C4. J. Raman Spectrosc. 48, 314–322. Wu, Z., Tyan, S., Chen, H., Huang, Y., Lee, C., and Mo, T. (2017b). Temperature-dependent photoluminescence and XPS study of ZnO nanowires grown on flexible Zn foil via thermal oxidation. Superlattices Microstruct. 107, 38–43. Yang, C., Chen, J., Ji, X., Pollard, T.P., Lu ̈ , X., Sun, C.J., Hou, S., Liu, Q., Liu, C., Qing, T., et al. (2019). Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 569, 245–250. Yin, Q., Rao, D., Zhang, G., Zhao, Y., Han, J., Lin, K., Zheng, L., Zhang, J., Zhou, J., and Wei, M. (2019). CoFe-Cl layered double Hydroxide: a new cathode material for high-performance chloride ion batteries. Adv. Funct. Mater. 29, 1900983. Yu, T., Zhao, X., Ma, L., and Shen, X. (2017). Intercalation and electrochemical behaviors of layered FeOCl cathode material in chloride ion battery. Mater. Res. Bull. 96, 485–490. Zhang, C., Lv, W., Tao, Y., and Yang, Q.-H. (2015). Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage. Energy Environ. Sci. 8, 1390– 1403. iScience Article Zhao, X., Zhao-Karger, Z., Wang, D., and Fichtner, M. (2013). Metal oxychlorides as cathode materials for chloride ion batteries. Angew. Chem. 125, 13866–13869. Zhao, X., Ren, S., Bruns, M., and Fichtner, M. (2014). A new member in the rechargeable battery family. J. Power Sources 245, 706–711. Zhao, J., Tang, L., Xiang, J., Ji, R., Hu, Y., Yuan, J., Zhao, J., Tai, Y., and Cai, Y. (2015). Fabrication and properties of a high-performance chlorine doped graphene quantum dot based photovoltaic detector. RSC Adv. 5, 29222–29229. Zhao, J., Li, Y., Peng, X., Dong, S., Ma, J., Cui, G., and Chen, L. (2016). High-voltage Zn/ LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of ‘‘water-in-salt’’ electrolyte. Electrochem. Commun. 69, 6–10. Zhao, X., Zhao, Z., Yang, M., Xia, H., Yu, T., and Shen, X. (2017). Developing polymer cathode material for the chloride ion battery. ACS Appl. Mater. Interfaces 9, 2535–2540. Zhao, Z., Yu, T., Miao, Y., and Zhao, X. (2018). Chloride ion-doped polyaniline/carbon nanotube nanocomposite materials as new cathodes for chloride ion battery. Electrochim. Acta 270, 30–36. Zheng, H., Jiang, K., Abe, T., and Ogumi, Z. (2006). Electrochemical intercalation of lithium into a natural gra phite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon 44, 203–210. Zhou, A., Jiang, L., Yue, J., Tong, Y., Zhang, Q., Lin, Z., Liu, B., Wu, C., Suo, L., Hu, Y.S., et al. (2019). Water-in-Salt electrolyte promotes high- capacity FeFe(CN)6 cathode for aqueous Al-ion battery. ACS Appl. Mater. Interfaces 11, 41356– 41362. 14 iScience 24, 101976, January 22, 2021PDF Image | aqueous chlorine ion battery
PDF Search Title:
aqueous chlorine ion batteryOriginal File Name Searched:
high-voltage-cl-ion-battery.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |