PDF Publication Title:
Text from PDF Page: 028
6. References 1. Wittman, R. M.; Perry, M. L.; Lambert, T. N.; Chalamala, B. R.; Preger, Y., Perspective—On the Need for Reliability and Safety Studies of Grid-Scale Aqueous Batteries. J. Electrochem. Soc. 2020, 167 (9), 90545. 2. Patterson, M. Battery Storage Container Explodes, Rocking Rio Dell RV Park. https://krcrtv.com/north-coast-news/eureka-local-news/battery-storage-container-explodes- rocking-rio-dell-rv-park (accessed 08/30/2022). 3. Rychcik, M.; Skyllas-Kazacos, M., Characteristics of a new all-vanadium redox flow battery. J. Power Sources 1988, 22, 59-67. 4. Airgas Chlorine Safety Data Sheet. https://www.airgas.com/msds/001015.pdf. 5. Alagia, M.; Balucani, N.; Cartechini, L.; Casavecchia, P.; vanKleef, E. H.; Volpi, G. G.; Aoiz, F. J.; Banares, L.; Schwenke, D. W.; Allison, T. C.; Mielke, S. L.; Truhlar, D. G., Dynamics of the simplest chlorine atom reaction: An experimental and theoretical study. Science 1996, 273 (5281), 1519-1522. 6. Li, L. Y.; Kim, S.; Wang, W.; Vijayakumar, M.; Nie, Z. M.; Chen, B. W.; Zhang, J. L.; Xia, G. G.; Hu, J. Z.; Graff, G.; Liu, J.; Yang, Z. G., A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage. Adv. Energy Mater. 2011, 1 (3), 394-400. 7. Vijayakumar, M.; Wang, W.; Nie, Z. M.; Sprenkle, V.; Hu, J. Z., Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes. J. Power Sources 2013, 241, 173-177. 8. Kim, S.; Thomsen, E.; Xia, G. G.; Nie, Z. M.; Bao, J.; Recknagle, K.; Wang, W.; Viswanathan, V.; Luo, Q. T.; Wei, X. L.; Crawford, A.; Coffey, G.; Maupin, G.; Sprenkle, V., 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes. J. Power Sources 2013, 237, 300-309. 9. Yang, Y. D.; Zhang, Y. M.; Liu, T.; Huang, J., Improved broad temperature adaptability and energy density of vanadium redox flow battery based on sulfate-chloride mixed acid by optimizing the concentration of electrolyte. J. Power Sources 2019, 415, 62-68. 10. Lee, J.; Muya, J. T.; Chung, H.; Chang, J., Unraveling V(V)-V(IV)-V(III)-V(II) Redox Electrochemistry in Highly Concentrated Mixed Acidic Media for a Vanadium Redox Flow Battery: Origin of the Parasitic Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 11 (45), 42066-42077. 11. Kim, S.; Vijayakumar, M.; Wang, W.; Zhang, J.; Chen, B.; Nie, Z.; Chen, F.; Hu, J.; Li, L.; Yang, Z., Chloride supporting electrolytes for all-vanadium redox flow batteries. Phys. Chem. Chem. Phys. 2011, 13 (40), 18186-93. 12. Gibson, S. In Arlington Microgrid Project, Energy Storage Safety and Reliability Forum, Richland, WA/ Virtual, Richland, WA/ Virtual, 2022. 28PDF Image | Chlorine Gas Generation in Mixed-Acid Vanadium Redox
PDF Search Title:
Chlorine Gas Generation in Mixed-Acid Vanadium RedoxOriginal File Name Searched:
gas-evolution-vanadium-redox.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |