PDF Publication Title:
Text from PDF Page: 100
100 GREEN HYDROGEN COST REDUCTION Nel (2019), Nel hydrogen electrolysers, Nel, https://nelhydrogen.com/wp-content/ uploads/2020/03/Electrolysers-Brochure- Rev-C.pdf. Noack, C. et al. (2015), „Studie über die Planung einer Demonstrationsanlage zur Wasserstoff-Kraftstoffgewinnung durch Elektrolyse mit Zwischenspeicherung in Salzkavernen unter Druck“ [Study on the planning of a demonstration system for hydrogen fuel production by electrolysis with intermediate storage in salt caverns under pressure], https://elib.dlr.de/94979/ (accessed 2 November 2020). van ’t Noordende, H. and P. Ripson (2020), Gigawatt green hydrogen plant: State-of-the-art design and total installed capital costs, Institute for Sustainable Process Technology (ISPT), https://ispt.eu/ media/ISPT-public-report-gigawatt-green- hydrogen-plant.pdf. NOW (2018), “Studie IndWEDe - Industrialisierung der Wasserelektrolyse in Deutschland: Chancen und Herausforderungen für nachhaltigen Wasserstoff für Verkehr, Strom und Wärme” [Study IndWEDe - industrialisation of water electrolysis in Germany: Opportunities and challenges for sustainable hydrogen for transport, electricity and heat], Nationale Organisation Wasserstoff- und Brennstoffzellentechnologie, Berlin, http:// publica.fraunhofer.de/eprints/urn_nbn_ de_0011-n-5194940.pdf. Nuss, P. and E. Matthew (2014), “Life cycle assessment of metals: A scientific synthesis”, Metals Environmental Impacts, Vol. 9/7, https://journals.plos.org/plosone/ article?id=10.1371/journal.pone.0101298 (accessed 16 October 2020). Ozarslan, A. (2012), “Large-scale hydrogen energy storage in salt caverns”, International Journal of Hydrogen Energy, Vol. 37/19, pp. 1426514277, https://dx.doi. org/10.1016/j.ijhydene.2012.07.111. Proost, J. (2020), “Critical assessment of the production scale required for fossil parity of green electrolytic hydrogen”, International Journal of Hydrogen Energy, Vol. 45/35, pp. 1706717075, https://dx.doi. org/10.1016/j.ijhydene.2020.04.259. Reddy, K.V. and N. Ghaffour (2007), “Overview of the cost of desalinated water and costing methodologies”, Desalination, Vol. 205/1, pp. 340353, https://dx.doi. org/10.1016/j.desal.2006.03.558. Saba, S.M. et al. (2018), “The investment costs of electrolysis – A comparison of cost studies from the past 30 years”, International Journal of Hydrogen Energy, Vol. 43/3, pp. 12091223, https://dx.doi. org/10.1016/j.ijhydene.2017.11.115. Santos, D.M.F., C.A.C. Sequeira and J.L. Figueiredo (2013), “Hydrogen production by alkaline water electrolysis”, Química Nova, Vol. 36, pp. 11761193. Schalenbach, M. et al. (2016), “Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis”, Journal of the Electrochemical Society, Vol. 163/11, pp. F3197, https://dx.doi. org/10.1149/2.0271611jes. Schmidt, O. et al. (2017), “The future cost of electrical energy storage based on experience rates”, Nature Energy, Vol. 2/8, https://dx.doi.org/10.1038/nenergy.2017.110. Schoots, K. et al. (2008), “Learning curves for hydrogen production technology: An assessment of observed cost reductions”, International Journal of Hydrogen Energy, Vol. 33/11, pp. 26302645, https://dx.doi. org/10.1016/j.ijhydene.2008.03.011. Schoots, K., G.J. Kramer and B.C.C. van der Zwaan (2010), “Technology learning for fuel cells: An assessment of past and potential cost reductions”, Energy Policy, Vol. 38/6, pp. 28872897, https://dx.doi. org/10.1016/j.enpol.2010.01.022.PDF Image | GREEN HYDROGEN SCALING UP ELECTROLYSERS
PDF Search Title:
GREEN HYDROGEN SCALING UP ELECTROLYSERSOriginal File Name Searched:
IRENA_Green_hydrogen_cost_2020.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)