logo

Halogen Hybrid Flow Batteries

PDF Publication Title:

Halogen Hybrid Flow Batteries ( halogen-hybrid-flow-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 016

Energies 2022, 15, 7397 16 of 20 44. Thomas, J. Heat & Electricity Storage Annual Report 2017 Annual Report 2017; Swiss Competence Center for Energy Research—Heat and Electricity Storage: Zurich, Switzerland, 2018. 45. Arani, A.A.K.; Karami, H.; Gharehpetian, G.B.; Hejazi, M.S.A. Review of Flywheel Energy Storage Systems Structures and Applications in Power Systems and Microgrids. Renew. Sustain. Energy Rev. 2017, 69, 9–18. [CrossRef] 46. May, G.J.; Davidson, A.; Monahov, B. Lead Batteries for Utility Energy Storage: A Review. J. Energy Storage 2018, 15, 145–157. [CrossRef] 47. Moore, T.; Douglas, J. Energy Storage, Big Opportunities on a Smaller Scale. EPRI J. 2006, 16–23. 48. Yekini Suberu, M.; Wazir Mustafa, M.; Bashir, N. Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [CrossRef] 49. Ovshinsky, S.R.; Fetcenko, M.A.; Ross, J. A Nickel Metal Hydride Battery for Electric Vehicles. In Stanford R. Ovshinsky: The Science and Technology of an American Genius; World Scientific: Singapore, 2008; pp. 214–219. [CrossRef] 50. Gifford, P.; Adams, J.; Corrigan, D.; Venkatesan, S. Development of Advanced Nickel/Metal Hydride Batteries for Electric and Hybrid Vehicles. J. Power Sources 1999, 80, 157–163. [CrossRef] 51. Manthiram, A.; Yu, X. Ambient Temperature Sodium-Sulfur Batteries. Small 2015, 11, 2108–2114. [CrossRef] [PubMed] 52. Yu, X.; Manthiram, A. Capacity Enhancement and Discharge Mechanisms of Room-Temperature Sodium-Sulfur Batteries. ChemElectroChem 2014, 1, 1275–1280. [CrossRef] 53. Zheng, S.; Han, P.; Han, Z.; Li, P.; Zhang, H.; Yang, J. Nano-Copper-Assisted Immobilization of Sulfur in High-Surface-Area Mesoporous Carbon Cathodes for Room Temperature Na-S Batteries. Adv. Energy Mater. 2014, 4, 1–7. [CrossRef] 54. Fan, X.; Yue, J.; Han, F.; Chen, J.; Deng, T.; Zhou, X.; Hou, S.; Wang, C. High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology. ACS Nano 2018, 12, 3360–3368. [CrossRef] [PubMed] 55. Yu, X.; Manthiram, A. Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries. J. Phys. Chem. Lett. 2014, 5, 1943–1947. [CrossRef] [PubMed] 56. Delmas, C. Sodium and Sodium-Ion Batteries: 50 Years of Research. Adv. Energy Mater. 2018, 8, 1–9. [CrossRef] 57. Sudworth, J.L. Zebra Batteries. J. Power Sources 1994, 51, 105–114. [CrossRef] 58. Dustmann, C.H. Advances in ZEBRA Batteries. J. Power Sources 2004, 127, 85–92. [CrossRef] 59. Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [CrossRef] 60. Coplin, J.; Yang, A.; Poppe, A.R.; Burtscher, M. Increasing Telemetry Throughput Using Customized and Adaptive Data Compression. In Proceedings of the AIAA Space and Astronautics Forum and Exposition, SPACE 2016, Las Vegas, NV, USA, 12–15 September 2016. [CrossRef] 61. Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A5019–A5025. [CrossRef] 62. Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y.S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chem. Rev. 2007, 107, 3904–3951. [CrossRef] [PubMed] 63. Wu, J.; Yuan, X.Z.; Martin, J.J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W. A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies. J. Power Sources 2008, 184, 104–119. [CrossRef] 64. Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J.; Song, D.; Liu, Z.S.; Wang, H.; Shen, J. A Review of PEM Hydrogen Fuel Cell Contamination: Impacts, Mechanisms, and Mitigation. J. Power Sources 2007, 165, 739–756. [CrossRef] 65. Freni, S.; Cavallaro, S.; Aquino, M.; Ravida, D.; Giordano, N. Lifetime-Limiting Factors for a Molten Carbonate Fuel Cell. Int. J. Hydrogen Energy 1994, 19, 337–341. [CrossRef] 66. Mehrpooya, M.; Sayyad, S.; Zonouz, M.J. Energy, Exergy and Sensitivity Analyses of a Hybrid Combined Cooling, Heating and Power (CCHP) Plant with Molten Carbonate Fuel Cell (MCFC) and Stirling Engine. J. Clean Prod. 2017, 148, 283–294. [CrossRef] 67. Zhang, X.; Liu, H.; Ni, M.; Chen, J. Performance Evaluation and Parametric Optimum Design of a Syngas Molten Carbonate Fuel Cell and Gas Turbine Hybrid System. Renew. Energy 2015, 80, 407–414. [CrossRef] 68. Sorensen, B.; Spazzafumo, G. Hydrogen and Fuel Cells. Emerging Technologies and Applications; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9781119130536. 69. Dicks, A.L.; Rand, D.A.J. Fuel Cell Systems Explained; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018; ISBN 9781118706978. 70. Blackburn, B. Affordable, High Performance, Intermediate Temperature Solid Oxide Fuel Cells. Ph.D. Dissertation, Redox Power Systems LLC, Beltsville, MD, USA, 2015. 71. McPhail, S.; Leto, L.; Boigues-Muñoz, C. The Yellow Pages of SOFC Technology—International Status of SOFC Deployment 2012–2013; ENEA: Roma, Italy, 2013; ISBN 978-88-8286-290-9. 72. High-Temperature Fuel Cell Systems. Bosch Company Announcement. Available online: https://www.bosch.com/research/ know-how/success-stories/high-temperature-fuel-cell-systems/ (accessed on 8 September 2022). 73. Enervault. Final Technical Report Flow Battery Solution for Smart Grid Applications; Enervault: Sunnyvale, CA, USA, 2015. 74. DOE Global Energy Storage Database. Available online: https://sandia.gov/ess-ssl/gesdb/public/projects.html (accessed on 8 September 2022). 75. Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q. Redox Flow Batteries: A Review. J Appl. Electrochem. 2011, 41, 1137–1164. [CrossRef] 76. Manohar, A.K.; Kim, K.M.; Plichta, E.; Hendrickson, M.; Rawlings, S.; Narayanan, S.R. A High Efficiency Iron-Chloride Redox Flow Battery for Large-Scale Energy Storage. J. Electrochem. Soc. 2016, 163, A5118–A5125. [CrossRef]

PDF Image | Halogen Hybrid Flow Batteries

halogen-hybrid-flow-batteries-016

PDF Search Title:

Halogen Hybrid Flow Batteries

Original File Name Searched:

energies-15-07397-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP