PDF Publication Title:
Text from PDF Page: 018
Energies 2022, 15, 7397 18 of 20 107. Aurbach, D.; Mccloskey, B.D.; Nazar, L.F.; Bruce, P.G. Underpinning Lithium—Air Batteries. Nat. Publ. Group 2016, 1, 1–11. [CrossRef] 108. Asadi,M.;Sayahpour,B.;Abbasi,P.;Ngo,A.T.;Karis,K.;Jokisaari,J.R.;Liu,C.;Narayanan,B.;Gerard,M.;Yasaei,P.;etal.A Lithium-Oxygen Battery with a Long Cycle Life in an Air-like Atmosphere. Nature 2018, 555, 502–506. [CrossRef] 109. Xu,S.;Yao,Y.;Guo,Y.;Zeng,X.;Lacey,S.D.;Song,H.;Chen,C.;Li,Y.;Dai,J.;Wang,Y.;etal.TextileInspiredLithium–Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways. Adv. Mater. 2017, 30, 1704907. [CrossRef] 110. Torres,A.E.;Balbuena,P.B.ExploringtheLiOHFormationReactionMechanisminLithium-AirBatteries.Chem.Mater.2018,30, 708–717. [CrossRef] 111. Zhao,Z.;Li,M.;Zhang,L.;Dai,L.;Xia,Z.DesignPrinciplesforHeteroatom-DopedCarbonNanomaterialsasHighlyEfficient Catalysts for Fuel Cells and Metal-Air Batteries. Adv. Mater. 2015, 27, 6834–6840. [CrossRef] 112. Cui,Z.;Fu,G.;Li,Y.;Goodenough,J.B.Ni3FeN-SupportedFe3PtIntermetallicNanoalloyasaHigh-PerformanceBifunctional Catalyst for Metal–Air Batteries. Angew. Chem. 2017, 129, 10033–10037. [CrossRef] 113. Hardwick, L.J.; León, C.P. de Rechargeable Multi-Valent Metal-Air Batteries. Johns. Matthey Technol. Rev. 2018, 62, 134–149. [CrossRef] 114. Liu, G.; Kim, J.Y.; Wang, M.; Woo, J.Y.; Wang, L.; Zou, D.; Lee, J.K. Soft, Highly Elastic, and Discharge-Current-Controllable Eutectic Gallium–Indium Liquid Metal–Air Battery Operated at Room Temperature. Adv. Energy Mater. 2018, 8, 1–9. [CrossRef] 115. Wu,X.;Meng,G.;Liu,W.;Li,T.;Yang,Q.;Sun,X.;Liu,J.Metal-OrganicFramework-Derived,Zn-DopedPorousCarbonPolyhedra with Enhanced Activity as Bifunctional Catalysts for Rechargeable Zinc-Air Batteries. Nano Res 2018, 11, 163–173. [CrossRef] 116. Li,X.;Liu,Z.;Song,L.;Wang,D.;Zhang,Z.Three-DimensionalGrapheneNetworkSupportedUltrathinCeO2Nanoflakesfor Oxygen Reduction Reaction and Rechargeable Metal-Air Batteries. Electrochim. Acta 2018, 263, 561–569. [CrossRef] 117. Wang,Y.J.;Fang,B.;Zhang,D.;Li,A.;Wilkinson,D.P.;Ignaszak,A.;Zhang,L.;Zhang,J.AReviewofCarbon-CompositedMaterials as Air-Electrode Bifunctional Electrocatalysts for Metal–Air Batteries; Springer: Singapore, 2018; Volume 1, ISBN 0123456789. 118. Lee, D.U.; Park, M.G.; Cano, Z.P.; Ahn, W.; Chen, Z. Hierarchical Core–Shell Nickel Cobaltite Chestnut-like Structures as Bifunctional Electrocatalyst for Rechargeable Metal–Air Batteries. ChemSusChem 2018, 11, 406–414. [CrossRef] [PubMed] 119. Han,X.;He,G.;He,Y.;Zhang,J.;Zheng,X.;Li,L.;Zhong,C.;Hu,W.;Deng,Y.;Ma,T.Y.EngineeringCatalyticActiveSiteson Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Adv. Energy Mater. 2018, 8, 1–13. [CrossRef] 120. Wang,Z.L.;Xu,D.;Xu,J.J.;Zhang,X.B.OxygenElectrocatalystsinMetal-AirBatteries:FromAqueoustoNonaqueousElectrolytes. Chem. Soc. Rev. 2014, 43, 7746–7786. [CrossRef] 121. Wu,Z.P.;Caracciolo,D.T.;Maswadeh,Y.;Wen,J.;Kong,Z.;Shan,S.;Vargas,J.A.;Yan,S.;Hopkins,E.;Park,K.;etal.Alloying– Realloying Enabled High Durability for Pt–Pd-3d-Transition Metal Nanoparticle Fuel Cell Catalysts. Nat. Commun. 2021, 12, 1–14. [CrossRef] 122. Chong, L.; Wen, J.; Kubal, J.; Sen, F.G.; Zou, J.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W.; Liu, D.J. Ultralow-Loading Platinum-Cobalt Fuel Cell Catalysts Derived from Imidazolate Frameworks. Science 2018, 362, 1276–1281. [CrossRef] 123. Ren,X.;Lv,Q.;Liu,L.;Liu,B.;Wang,Y.;Liu,A.;Wu,G.CurrentProgressofPtandPt-BasedElectrocatalystsUsedforFuelCells. Sustain. Energy Fuels 2019, 4, 15–30. [CrossRef] 124. Dowd,R.P.;Zeets,M.;VanNguyen,T.EffectofBr2ComplexationonaHydrogen-BromineFlowBatteryPerformance.ECSMeet. Abstr. 2015, 47, 1886. [CrossRef] 125. Cho, K.T.; Albertus, P.; Battaglia, V.; Kojic, A.; Srinivasan, V.; Weber, A.Z. Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage. Energy Technol. 2013, 1, 596–608. [CrossRef] 126. Xu,Y.;Xie,C.;Li,X.Bromine–GraphiteIntercalationEnabledTwo-ElectronTransferforaBromine-BasedFlowBattery.Trans. Tianjin Univ. 2022, 28, 186–192. [CrossRef] 127. Livshits,V.;Ulus,A.;Peled,E.High-PowerH2/Br2FuelCell.Electrochem.Commun.2006,8,1358–1362.[CrossRef] 128. Cho,K.T.;Ridgway,P.;Weber,A.Z.;Haussener,S.;Battaglia,V.;Srinivasan,V.HighPerformanceHydrogen/BromineRedoxFlow Battery for Grid-Scale Energy Storage. J. Electrochem. Soc. 2012, 159, A1806–A1815. [CrossRef] 129. Kim,J.;Park,H.RecentAdvancesinPorousElectrodesforVanadiumRedoxFlowBatteriesinGrid-ScaleEnergyStorageSystems: A Mass Transfer Perspective. J. Power Sources 2022, 545, 231904. [CrossRef] 130. Parasuraman,A.;Lim,T.M.;Menictas,C.;Skyllas-Kazacos,M.ReviewofMaterialResearchandDevelopmentforVanadium Redox Flow Battery Applications. Electrochim. Acta 2013, 101, 27–40. [CrossRef] 131. Zhang, H.; Lu, W.; Li, X. Progress and Perspectives of Flow Battery Technologies. Electrochem. Energy Rev. 2019, 2, 492–506. [CrossRef] 132. Kear, G.; Shah, A.A.; Walsh, F.C. Development of the All-vanadium Redox Flow Battery for Energy Storage: A Review of Technological, Financial and Policy Aspects. Int. J. Energy Res. 2012, 36, 1105–1120. [CrossRef] 133. Wlodarczyk,J.K.;Küttinger,M.;Friedrich,A.K.;Schumacher,J.O.ExploringtheThermodynamicsoftheBromineElectrodein Concentrated Solutions for Improved Parametrisation of Hydrogen–Bromine Flow Battery Models. J. Power Sources 2021, 508, 230202. [CrossRef] 134. Ronen,R.;Atlas,I.;Suss,M.E.TheoryofFlowBatterieswithFastHomogeneousChemicalReactions.J.Electrochem.Soc.2018, 165, A3820–A3827. [CrossRef] 135. Ronen,R.;Gloukhovski,R.;Suss,M.E.Single-FlowMultiphaseFlowBatteries:Experiments.J.PowerSources2022,540,231567. [CrossRef]PDF Image | Halogen Hybrid Flow Batteries
PDF Search Title:
Halogen Hybrid Flow BatteriesOriginal File Name Searched:
energies-15-07397-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)