logo

hybrid redox flow batteries with zinc negative electrodes

PDF Publication Title:

hybrid redox flow batteries with zinc negative electrodes ( hybrid-redox-flow-batteries-with-zinc-negative-electrodes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 064

16. Bolund, B., H. Bernhoff, and M. Leijon, Flywheel energy and power storage systems. Renew. Sustainable Energy Rev., 2007; 11: 235-8. 17. Poullikkas, A., A comparative overview of large-scale battery systems for electricity storage. Renew. Sustainable Energy Rev., 2013; 27: 778-88. 18. Dell, R.M. and D.A.J. Rand, Energy storage — a key technology for global energy sustainability. J. Power Sources, 2001; 100: 2-17. 19. Perry, M.L. and A.Z. Weber, Advanced redox-flow batteries: A perspective. J. Electrochem. Soc., 2016; 163: A5064-7. 20. Taylor, P., R. Bolton, D. Stone, X.-P. Zhang, C. Martin, and P. Upham, Pathways for energy storage in the UK. Centre for Low Carbon Futures. 2012. 21. Arenas, L.F., C. Ponce de León, and F.C. Walsh, Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. J. Energy Storage, 2017; 11: 119-53. 22. Bard, A.J., R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solution. Taylor & Francis. 1985. 23. Arenas, L.F., C. Ponce de León, and F.C. Walsh, Electrochemical redox processes involving soluble cerium species. Electrochim. Acta, 2016; 205: 226-47. 24. Jorné, J., J.T. Kim, and D. Kralik, The zinc-chlorine battery: half-cell overpotential measurements. J. Appl. Electrochem., 1979; 9: 573-9. 25. Lex, P. and B. Jonshagen, The zinc/bromine battery system for utility and remote area applications. Power Eng. J., 1999; 13: 142-8. 26. Tang, C. and D. Zhou, Methanesulfonic acid solution as supporting electrolyte for zinc- vanadium redox battery. Electrochim. Acta, 2012; 65: 179-84. 27. Cheng, J., L. Zhang, Y.-S. Yang, Y.-H. Wen, G.-P. Cao, and X.-D. Wang, Preliminary study of single flow zinc–nickel battery. Electrochem. Commun., 2007; 9: 2639-42. 28. Noack, J., N. Roznyatovskaya, T. Herr, and P. Fischer, The chemistry of redox-flow batteries. Angew. Chem. Int. Ed., 2015; 54: 9776-809. 29. Magnani, N.J., R. P.Clark, J.W. Braithwaite, D.M. Bush, P.C. Butler, J.M. Freese, K.R. Grothaus, K.D. Murphy, and P.E. Shoemaker, Exploratory battery technology development and testing report for 1985. Albuquerque, NM (USA). Sandia National Laboratories. 1987. 30. Selverston, S., R.F. Savinell, and J.S. Wainright, Zinc-iron flow batteries with common electrolyte. J. Electrochem. Soc., 2017; 164: A1069-75. 31. Li, B., Z. Nie, M. Vijayakumar, G. Li, J. Liu, V. Sprenkle, and W. Wang, Ambipolar zinc- polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun., 2015; 6: 1-8. 64

PDF Image | hybrid redox flow batteries with zinc negative electrodes

hybrid-redox-flow-batteries-with-zinc-negative-electrodes-064

PDF Search Title:

hybrid redox flow batteries with zinc negative electrodes

Original File Name Searched:

Zn_Negative_RFB_Review_24_Jan_2018.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP