PDF Publication Title:
Text from PDF Page: 074
163. Rahman, M.A., X. Wang, and C. Wen, High energy density metal-air batteries: A review. J. Electrochem. Soc., 2013; 160: A1759-71. 164. Wang, J., Y. Li, and X. Sun, Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium–air batteries. Nano Energy, 2013; 2: 443-67. 165. Fluidic Energy. Fluidic Energy. http://fluidicenergy.com/; 2016 [accessed 29.08.17]. 166. US Department of Energy. Zinc-air grid energy storage. http://arpa- e.energy.gov/sites/default/files/documents/files/FluidicEnergy_GRIDS_ExternalImpactShee t_FINAL.pdf; 2016 [accessed 29.08.17]. 167. Bockris, J.O.M., Z. Nagy, and A. Damjanovic, On the deposition and dissolution of zinc in alkaline solutions. J. Electrochem. Soc., 1972; 119: 285-95. 168. Schlesinger, M. and M. Paunovic, Electrodeposition of Zinc and Zinc Alloys, in Modern Electroplating, René Winand, Editor., John Wiley & Sons, Inc.: Hoboken, NJ, USA.; 2010. p. 285-307. 169. Ortiz-Aparicio, J.L., Y. Meas, G. Trejo, R. Ortega, T.W. Chapman, and E. Chainet, Effects of organic additives on zinc electrodeposition from alkaline electrolytes. J. Appl. Electrochem., 2012; 43: 289-300. 170. Wen, Y.-H., J. Cheng, L. Zhang, X. Yan, and Y.-S. Yang, The inhibition of the spongy electrocrystallization of zinc from doped flowing alkaline zincate solutions. J. Power Sources, 2009; 193: 890-4. 171. Wen, Y., T. Wang, J. Cheng, J. Pan, G. Cao, and Y. Yang, Lead ion and tetrabutylammonium bromide as inhibitors of the growth of spongy zinc in single flow zinc/nickel batteries. Electrochim. Acta, 2012; 59: 64-8. 172. Kavitha, B., P. Santhosh, M. Renukadevi, A. Kalpana, P. Shakkthivel, and T. Vasudevan, Role of organic additives on zinc plating. Surf. Coat. Technol., 2006; 201: 3438-42. 173. Yang, H., Y. Cao, X. Ai, and L. Xiao, Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives. J. Power Sources, 2004; 128: 97-101. 174. Lee, S.-M., Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim, and S.-B. Cho, Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. J. Power Sources, 2013; 227: 177-84. 175. Müller, S., F. Holzer, and O. Haas, Optimized zinc electrode for the rechargeable zinc–air battery. J. Appl. Electrochem., 1998; 28: 895-8. 176. Lee, C.W., K. Sathiyanarayanan, S.W. Eom, H.S. Kim, and M.S. Yun, Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells. J. Power Sources, 2006; 160: 161-4. 177. Naybour, R.D., The effect of electrolyte flow on the morphology of zinc electrodeposited from aqueous alkaline solution containing zincate ions. J. Electrochem. Soc., 1969; 116: 520-4. 74PDF Image | hybrid redox flow batteries with zinc negative electrodes
PDF Search Title:
hybrid redox flow batteries with zinc negative electrodesOriginal File Name Searched:
Zn_Negative_RFB_Review_24_Jan_2018.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)