PDF Publication Title:
Text from PDF Page: 079
239. Spanos, C., D.E. Turney, and V. Fthenakis, Life-cycle analysis of flow-assisted nickel zinc-, manganese dioxide-, and valve-regulated lead-acid batteries designed for demand-charge reduction. Renew. Sustainable Energy Rev., 2015; 43: 478-94. 240. Bass, K., P.J. Mitchell, G.D. Wilcox, and J. Smith, Methods for the reduction of shape change and dendritic growth in zinc-based secondary cells. J. Power Sources, 1991; 35: 333-51. 241. Parker, J.F., I.R. Pala, C.N. Chervin, J.W. Long, and D.R. Rolison, Minimizing shape change at Zn sponge anodes in rechargeable Ni–Zn cells: Impact of electrolyte formulation. J. Electrochem. Soc., 2016; 163: A351-5. 242. Jain, R., T.C. Adler, F.R. McLarnon, and E.J. Cairns, Development of long-lived high- performance zinc-calcium/nickel oxide cells. J. Appl. Electrochem.; 22: 1039-48. 243. Banik, S.J. and R. Akolkar, Suppressing dendritic growth during alkaline zinc electrodeposition using polyethylenimine additive. Electrochim. Acta, 2015; 179: 475-81. 244. Shivkumar, R., G. Paruthimal Kalaignan, and T. Vasudevan, Effect of additives on zinc electrodes in alkaline battery systems. J. Power Sources, 1995; 55: 53-62. 245. Lee, C.W., K. Sathiyanarayanan, S.W. Eom, H.S. Kim, and M.S. Yun, Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives. J. Power Sources, 2006; 159: 1474-7. 246. Sylla, D., C. Savall, M. Gadouleau, C. Rebere, J. Creus, and P. Refait, Electrodeposition of Zn–Mn alloys on steel using an alkaline pyrophosphate-based electrolytic bath. Surf. Coat. Technol., 2005; 200: 2137-45. 247. Pereira, M.S., L.L. Barbosa, C.A.C. Souza, A.C.M. Moraes, and I.A. Carlos, The influence of sorbitol on zinc film deposition, zinc dissolution processand morphology of deposits obtained from alkaline bath. J. Appl. Electrochem., 2006; 36: 727-32. 248. Zhu, J., Y. Zhou, and C. Gao, Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution. J. Power Sources, 1998; 72: 231-5. 249. Thornton, R.F. and E.J. Carlson, Properties of alternate electrolytes for secondary zinc batteries. J. Electrochem. Soc., 1980; 127: 1448-52. 250. Adler, T.C., F.R. McLarnon, and E.J. Cairns, Low-zinc-solubility electrolytes for use in zinc/nickel oxide cells. J. Electrochem. Soc., 1993; 140: 289-94. 251. Kwak, B.S., D.Y. Kim, S.S. Park, B.S. Kim, and M. Kang, Implementation of stable electrochemical performance using a Fe0.01ZnO anodic material in alkaline Ni–Zn redox battery. Chem. Eng. J., 2015; 281: 368-78. 252. Ito, Y., X. Wei, D. Desai, D. Steingart, and S. Banerjee, An indicator of zinc morphology transition in flowing alkaline electrolyte. J. Power Sources, 2012; 211: 119-28. 253. Wei, X., D. Desai, G.G. Yadav, D.E. Turney, A. Couzis, and S. Banerjee, Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries. Electrochim. Acta, 2016; 212: 603-13. 79PDF Image | hybrid redox flow batteries with zinc negative electrodes
PDF Search Title:
hybrid redox flow batteries with zinc negative electrodesOriginal File Name Searched:
Zn_Negative_RFB_Review_24_Jan_2018.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |