logo

hybrid redox flow batteries with zinc negative electrodes

PDF Publication Title:

hybrid redox flow batteries with zinc negative electrodes ( hybrid-redox-flow-batteries-with-zinc-negative-electrodes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 081

268. Kim, J.T. and J. Jorné, Mass transfer of dissolved chlorine to a rotating-zinc hemisphere in ZnCl2 solution. J. Electrochem. Soc., 1978; 125: 89-94. 269. Hart, T.G. Electrode for a zinc-chloride battery and batteries containing the same. US Patent 4,071,660. 1978. 270. Henriksen, G.L. Zinc halogen battery electrolyte composition with lead additive. US Patent 4,306,003. 1981. 271. Hammond, M.J., P.H. Schultz, and V. Feiman. Zinc halogen battery electrolyte compositions with bismuth additive. US Patent 4,307,159. 1981. 272. H., W., S. J.R., and H. R.P., Mass transfer and current distribution in a zinc/redox-battery flow cell. Indian J Technol., 1986; 24: 372-80. 273. M-Z., Y., H. W., and S. J.R., A cycling performance model for the zinc/ferricyanide battery. J. Chem. Ind. Eng. Chi., 1989; 4: 93-114. 274. Assink, R.A. and C. Arnold, Jr. Development of membranes for the zinc/ferricyanide battery. In: 20th Intersoc. Energy Conversion Engineering Conference. 1985. 275. ViZn Energy Inc. Safe energy storage. http://www.viznenergy.com/; 2016 [accessed 29.08.17]. 276. Xie, Z., Q. Su, A. Shi, B. Yang, B. Liu, J. Chen, X. Zhou, D. Cai, and L. Yang, High performance of zinc-ferrum redox flow battery with Ac−/HAc buffer solution. J. Energy Chem., 2016; 25: 495-9. 277. Gong, K., X. Ma, K.M. Conforti, K.J. Kuttler, J.B. Grunewald, K.L. Yeager, M.Z. Bazant, S. Cu, and Y. Yan, A zinc-iron redox-flow battery under $100 per kW h of system capital cost. Energy Env. Sci., 2015; 8: 2941-5. 278. Weng, G.-M., Z. Li, G. Cong, Y. Zhou, and Y.-C. Lu, Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy Env. Sci., 2017; 10: 735-41. 279. Pan, J., Y. Wen, J. Cheng, J. Pan, S. Bai, and Y. Yang, Evaluation of substrates for zinc negative electrode in acid PbO2–Zn single flow batteries. Chin. J. Chem. Eng., 2016; 24: 529- 34. 280. Marino, M., L. Misuri, A. Carati, and D. Brogioli, Proof-of-concept of a zinc-silver battery for the extraction of energy from a concentration difference. Energies, 2014; 7: 3664-83. 281. Winsberg, J., S. Muench, T. Hagemann, S. Morgenstern, T. Janoschka, M. Billing, F.H. Schacher, G. Hauffman, J.-F. Gohy, S. Hoeppner, M.D. Hager, and U.S. Schubert, Polymer/zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte. Polym. Chem., 2016; 7: 1711-8. 282. Winsberg, J., T. Janoschka, S. Morgenstern, T. Hagemann, S. Muench, G. Hauffman, J.-F. Gohy, M.D. Hager, and U.S. Schubert, Poly(TEMPO)/zinc hybrid-flow battery: A novel, “green,” high voltage, and safe energy storage system. Adv. Mater., 2016; 28: 2238-43. 81

PDF Image | hybrid redox flow batteries with zinc negative electrodes

hybrid-redox-flow-batteries-with-zinc-negative-electrodes-081

PDF Search Title:

hybrid redox flow batteries with zinc negative electrodes

Original File Name Searched:

Zn_Negative_RFB_Review_24_Jan_2018.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP