logo

Hydrogen-Bromate Flow Battery

PDF Publication Title:

Hydrogen-Bromate Flow Battery ( hydrogen-bromate-flow-battery )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 016

Membranes 2022, 12, 1228 16 of 16 48. Vorotyntsev, M.A.; Antipov, A.E. Bromate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-diffusion transport for excess of bromate ions compared to proton. Electrochim. Acta 2018, 261, 113. [CrossRef] 49. Vorotyntsev, M.A.; Volgin, V.M.; Davydov, A.D. Halate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-migration-diffusion transport for comparable concentrations of halate ions and protons. Electrochim. Acta 2022, 409, 139961. [CrossRef] 50. Modestov, A.D.; Konev, D.V.; Antipov, A.E.; Petrov, M.M.; Pichugov, R.D.; Vorotynsev, M.A. Bromate electroreduction from sulfuric acid solution at rotating disk electrode: Experimental study. Electrochim. Acta 2018, 259, 655. [CrossRef] 51. Konev, D.V.; Antipov, A.E.; Petrov, M.M.; Shamraeva, M.A.; Vorotynsev, M.A. Surprising dependence of the current density of bromate electroreduction on the microelectrode radius as manifestation of the autocatalytic redox-cycle (EC”) reaction mechanism. Electrochem. Commun. 2018, 86, 76. [CrossRef] 52. Petrov, M.M.; Konev, D.V.; Kuznetsov, V.V.; Antipov, A.E.; Glazkov, A.T.; Vorotyntsev, M.A. Electrochemically driven evolution of Br-containing aqueous solution composition. J. Electroanal. Chem. 2019, 836, 125–133. [CrossRef] 53. Petrov, M.M.; Konev, D.V.; Antipov, A.E.; Kartashova, N.V.; Kuznetsov, V.V.; Vorotyntsev, M.A. Theoretical Analysis of Changes in the Solution Composition during Anodic Electrolysis of Bromide. Russ. J. Electrochem. 2019, 55, 1058. [CrossRef] 54. Petrov, M.M.; Konev, D.V.; Antipov, A.E.; Kartashova, N.V.; Kuznetsov, V.V.; Vorotyntsev, M.A. Theoretical Analysis of Changes in the System’s Composition in the Course of Oxidative Electrolysis of Bromide Solution: pH Dependence. Russ. J. Electrochem 2020, 56, 883. [CrossRef] 55. Pichugov, R.D.; Konev, D.V.; Speshilov, I.O.; Abunaeva, L.Z.; Petrov, M.M.; Vorotyntsev, M.A. Analysis of the composition of bromide anion oxidation products in aqueous solutions with different pH via rotating ring-disk electrode method. Membranes 2022, 12, 820. [CrossRef] [PubMed] 56. Grgur, B.N. Electrochemical Oxidation of Bromides on DSA/RuO2 Anode in the Semi-Industrial Batch Reactor for On-Site Water Disinfection. J. Electrochem. Soc. 2019, 166, E50. [CrossRef] 57. Cettou, P.; Robertson, P.; Ibl, N. On the electrolysis of aqueous bromide solutions to bromate. Electrochim. Acta 1984, 29, 875. [CrossRef] 58. Osuga, T.; Sugino, K. Electrolytic Production of Bromates. J. Electrochem. Soc. 1957, 104, 448. [CrossRef] 59. Pavlovic, O.Z. Formation of bromates at a RuO2/TiO2 titanium anode. Surf. Coat. Technol. 1988, 37, 177. [CrossRef] 60. Henry Bergmann, M.E.; Iourtchouk, T.; Rollin, J. The occurrence of bromate and perbromate on BDD anodes during electrolysis of aqueous systems containing bromide: First systematic experimental studies. J. Appl. Electrochem. 2011, 41, 1109. [CrossRef] 61. Vacca, A.; Mascia, M.; Palmas, S.; Mais, L.; Rizzardini, S. On the formation of bromate and chlorate ions during electrolysis with boron doped diamond anode for seawater treatment. J. Chem. Technol. Biotechnol. 2013, 88, 2244. [CrossRef] 62. Konev, D.V.; Antipov, A.E.; Vorotyntsev, M.A.; Loktionov, P.A.; Glazkov, A.T.; Pichugov, R.D.; Petrov, M.M. Cell for Spectropho- tometry of Electrolytes in the Process of Electrochemical Research. Russia Patent 190893, 22 January 2019. 63. Konev, D.V.; Vorotyntsev, M.A.; Loktionov, P.A.; Kartashova, N.V.; Antipov, A.E.; Modestov, A.D.; Glazkov ATAbunaeva, L.Z. Luggin Capillary Device for Membrane-Electrode Assemblies of Flow Electrochemical Reactors and Power Sources. Russia Patent 198483, 13 July 2020. 64. Mussini, T.; Longhi, P. The Halogens. Bromine. In Standard Potentials in Aqueous Solutions, 1st ed.; Bard, A.J., Parsons, R., Jordan, J., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1985. 65. Toth, Z.; Fabian, I. Oxidation of Chlorine (III) by Hypobromous Acid: Kinetics and Mechanism. Inorg. Chem. 2004, 43, 2717. [CrossRef] [PubMed] 66. Wang, T.X.; Kelley, M.D.; Cooper, J.N.; Beckwith, R.C.; Margerum, D.W. Equilibrium, Kinetic, and UV-Spectral Characteristics of Aqueous Bromine Chloride, Bromine, and Chlorine Species. Inorg. Chem. 1994, 33, 5872. [CrossRef] 67. Betts, R.H.; Mackenzie, A.N. Formation and stability of hydrobromous acid in perchloric acid solutions of bromine and bromate ions. Can. J. Chem. 1951, 29, 666–677. [CrossRef] 68. Petrov, M.M.; Loktionov, P.A.; Konev, D.V.; Antipov, A.E.; Astafiev, E.A.; Vorotyntsev, M.A. Evolution of Anolyte Composition in the Oxidative Electrolysis of Sodium Bromide in a Sulfuric Acid Medium. Russ. J. Electrochem. 2019, 55, 95–105. [CrossRef] 69. Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 2008, 178, 103–117. [CrossRef]

PDF Image | Hydrogen-Bromate Flow Battery

hydrogen-bromate-flow-battery-016

PDF Search Title:

Hydrogen-Bromate Flow Battery

Original File Name Searched:

membranes-12-01228-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP