PDF Publication Title:
Text from PDF Page: 006
Executive Summary Advanced exploration of Mars, particularly human missions, will require vast amounts of fuel and oxygen for extended campaigns and the return of samples or humans back to Earth. If fuel and oxygen can be prepared on Mars from in-situ resources, this would greatly reduce the launch mass of the mission from Earth. In this Keck Institute for Space Sciences (KISS) study, the viability of Mars near-ambient temperature photoelectrochemical (PEC) or electrochemical (EC) production of fuel and oxygen from atmospheric carbon dioxide—with or without available water—was examined. With PEC devices incorporated into lightweight, large-area structures operating near 25◦C and collecting solar energy to directly convert carbon dioxide into oxygen, it may be possible to reduce the launch mass (compared with bringing oxygen directly from Earth) by a factor of three or more. There are other numerous benefits of such a system relative to other in-situ resource utilization (ISRU) schemes, notably reduced thermal management (e.g., lower heating demand and decreased amplitude of thermal cycling) and the elimination of a need for a fission power source. However, there are considerable technical hurdles that must be surmounted before a PEC or EC ISRU system could be competitive with other more mature ISRU approaches, such as solid oxide electrolysis (SOXE) technology. Noteworthy challenges include: the identification of highly stable homogeneous or heterogeneous catalysts for oxygen evolution and carbon monoxide or methane evolution; quantification of long-term operation under the harsh Martian conditions; and appropriate coupled catalyst–light absorber systems that can be reliably stowed then deployed over large areas, among other challenges described herein.PDF Image | ISRU Challenge Production of O2 and Fuel from CO2
PDF Search Title:
ISRU Challenge Production of O2 and Fuel from CO2Original File Name Searched:
ISRU_final_report.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)