PDF Publication Title:
Text from PDF Page: 008
References 1. 2. U.S. Department of Energy, Energy Earthshots, (https://www.energy.gov/eere/long-duration- storage- shot#:~:text=The%20Long%20Duration%20Storage%20Shot%20establishes%20a%20target%20to%2 0reduce,decarbonization%20of%20the%20electric%20grid.) 3. 4. "The Future of Energy Storage," MIT Energy Initiative, 2022. (https://energy.mit.edu/wp- content/uploads/2022/05/The-Future-of-Energy-Storage.pdf) U.S. Department of Energy, Industrial Decarbonization Roadmap (https://www.energy.gov/eere/doe-industrial-decarbonization-roadmap) W.H. Woodford, S. Burger, M Ferrara, Y.-M. Chiang, “The iron-energy nexus: A new paradigm for long-duration storage at scale and clean steelmaking,” One Earth, 5[3] 212-215 (2022), https://doi.org/10.1016/j.oneear.2022.03.003 5. S. Sripad, D. Krishnamurthy, and V. Viswanathan, "The Iron-Age of Storage Batteries - Technoeconomic Promises and Challenges," ECSarXiv, https://doi.org/10.1149/osf.io/a4se8 6. A. Bettoli, M. Linder, T. Naucle ́ r, J. Noffsinger, S. Sengupta, H. Tai, and G. van Gendt, “Net-zero power: Long-duration energy storage for a renewable grid” McKinsey & Company, November 22, 2021. https://www.mckinsey. com/business-functions/sustainability/ourinsights/ net-zero-power- long-duration-energystorage-for-a-renewable-grid. 7. Petr Vanysek, “Electrochemical Series”, CRC Handbook of Chemistry and Physics, 101st Ed, 2020, CRC Press. 8. Z. Li, M. S. Pan, L. Su, P.-c. Tsai, J. M. Valle, A. F. Badel, S. L. Eiler, F. R. Brushett, Y.-M. Chiang, “Air-Breathing Aqueous Sulfur Flow Battery for Ultralow Cost Electrical Storage,” Joule, 1, 306-327 (2017). DOI: 10.1016/j.joule.2017.08.007 9. J. J. Kaczur, L. L. Scott, R. L. Dotson, “Electrochemical Process Development at Olin Based on Advances in Electrodes, Cell Designs, and Chemical Feedstocks,” The 11th International Forum on Electrolysis in the Chemical Industry, 1997. 10. L. Su, J. A. Kowalski, K. J. Carroll, F. R. Brushett, “Recent Developments and Trends in Redox Flow Batteries,” pp. 673-712 in Rechargeable Batteries, Z. Zhang and S. S. Zhang, eds., Springer, 2015. 11. Linden's Handbook of Batteries, 4th Edition, T. B. Reddy, editor, McGraw Hill, NY, 2011. 12. M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli and M. Saleem, “Progress in Flow Battery Research and Development,” J. Electrochem. Soc., 158[8], R55-R79 (2011). doi:10.1149/1.3599565 13. L. W. Hruska and R. F. Savinell, "Investigation of Factors Affecting Performance of the Iron- Redox Battery," J. Electrochem. Soc., 128[1], 18-25 (1981). 14. Chapter 2, p. 17, in "The Future of Energy Storage," MIT Energy Initiative, 2022. (https://energy.mit.edu/wp-content/uploads/2022/05/The-Future-of-Energy-Storage.pdf) 8PDF Image | Reversible Chlorite Chlorine Dioxide Anion Redox Storage
PDF Search Title:
Reversible Chlorite Chlorine Dioxide Anion Redox StorageOriginal File Name Searched:
reversible-chlorite-chlorine-redox.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |