PDF Publication Title:
Text from PDF Page: 007
Dovepress Salt-free electrolysis of water 17. Bond AM, Fleischmann M, Robinson MJ. Electrochemistry in organic solvents without supporting electrolyte using platinum microelectrodes. J Electroanal Chem. 1984;168(1–2):299–312. 18. Montenegro MI, Queiros MA, Daschbach JL, editors. Microelectrodes: Theory and Applications. Dordrecht, The Netherlands: Kluwer; 1991. 19. Lee C, Anson FC. Inhibition of the electroreduction of Fe(CN)63 at microelectrodes in the absence of supporting electrolyte: Mediation of the inhibited reduction by methyl viologen. J Electroanal Chem. 1992;323(1–2):381–389. 20. Aoki K. Theory of ultramicroelectrodes. Electroanalysis. 1993;5(8): 627–639. 21. Myland JC, Oldham KB. General theory of steady-state voltammetry. J Electroanal Chem. 1993;347(1–2):49–91. 22. Ciszkowska M, Stojek Z. Voltammetry in solutions of low ionic strength. Electrochemical and analytical aspects. J Electroanal Chem. 1999;466(2):129–143. 23. Jaworski A, Stojek Z, Osteryoung JG. Oxidation of mercury microelec- trodes in complexing media in the presence and absence of supporting electrolyte: Formation of thiocyanate complexes. J Electroanal Chem. 2003;558:141–153. 24. Aoki K, Tokida A. Resistance of solution without supporting elec- trolyte under the reduction of HCl. Electrochim Acta. 2000;45(21): 3483–3488. 25. Paddon CA, Atobe M, Fuchigami T, et al. Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses. J Appl Electrochem. 2006;36(6):617–634. 26. Aoki K, Morita M, Niwa O, Tabei H. Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions. J Electroanal Chem. 1988;256(2):269–282. 27. Niwa O, Morita M, Tabei H. Electrochemical behavior of reversible redox species at interdigitated array electrodes with different geometries: consideration of redox cycling and collection efficiency. Anal Chem. 1990;62(5):447–452. 28. Dam VAT, Olthuis W, van den Berg A. Redox cycling with facing interdigitated array electrodes as a method for selective detection of redox species. Analyst. 2007;132:365–370. 29. Daruhazi L, Tokuda K, Farsang G. Cyclic voltammetry for reversible redox-electrode reactions in thin-layer cells with closely separated working and auxiliary electrodes of the same size. J Electroanal Chem. 1989;264(1–2):77–89. 30. Zhu F, Yan J, Lu M, Zhou Y, Yang Y, Mao B. A strategy for selective detection based on interferent depleting and redox cycling using the plane-recessed microdisk array electrodes. Electrochim Acta. 2011; 56(24):8101–8107. 31. Vandaveer WR, Woodward DJ, Fritsch I. Redox cycling measure- ments of a model compound and dopamine in ultrasmall volumes with a self-contained microcavity device. Electrochim Acta. 2003; 48(20–22):3341–3348. 32. Wolfrum B, Zevenbergen M, Lemay S. Nanofluidic Redox Cycling Amplification for the Selective Detection of Catechol. Anal Chem. 2008;80(4):972–977. 33. Lemay SG, Kang S, Mathwig K, Singh PS. Single-molecule elec- trochemistry: present status and outlook. Acc Chem Res. 2013; 46(2):369–377. 34. Spilker B, Randhahn J, Grabow H, Beikirch H, Jeroschewski P. New electrochemical sensor for the detection of hydrogen sulfide and other redox active species. J Electroanal Chem. 2008; 612(1):121–130. 35. van Megen MJJ, Odijk M, Wiedemair J, Olthuis W, van den Berg A. Differential cyclic voltammetry for selective and amplified detection. J Electroanal Chem. 2012:681:6–10. 36. Elving PJ, Spritzer MS. Polarographic reduction of hydrogen ion in non-aqueous solvents. Talanta. 1965;12(12):1243–1258. 37. Lipkowski J, Ross PN, editors. Chapter 7, IR spectroscopy of molecules at solid-solution interface. Adsorption of Molecules at Metal Electrodes. VCH, New York; 1992 . 38. Nanbu N, Kitamura F, Ohsaka T, Tokuda K. Adsorption of atomic hydrogen on a polycrystalline Pt electrode surface studied by FT-IRAS: the influence of adsorbed carbon monoxide on the spectral feature. J Electroanal Chem. 2000;485(2):128–134. 39. Clavilier J, Feliu J.M, Fernandez-Vega A, Aldaz A. Electrochemical behaviour of the Pt (111)-As system in acidic medium: adsorbed hydrogen and hydrogen reaction. J Electroanal Chem. 1990;294(1–2): 193–208. 40. Aoki K, Xian C. Relaxation Time of Memorial Diffusion by Chro- noamperometry at a Twin-electrode. J Phys Chem. C. 2007;111(42) : 15433–15439. 41. Aoki K, Toda H, Yamamoto J, Chen J, Nishiumi T.Is hydrogen gas in water present as bubbles or hydrated form?. J Electroanal Chem. 2012;668:83–89. Powered by TCPDF (www.tcpdf.org) Reports in Electrochemistry 2013:3 submit your manuscript | www.dovepress.com Dovepress 13PDF Image | Salt-free electrolysis of water facilitated by hydrogen gas
PDF Search Title:
Salt-free electrolysis of water facilitated by hydrogen gasOriginal File Name Searched:
47741-salt-free-electrolysis-of-water.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)