Studies of Electrode Processes in Industrial Electrosynthesis

PDF Publication Title:

Studies of Electrode Processes in Industrial Electrosynthesis ( studies-electrode-processes-industrial-electrosynthesis )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 003

Abstract Heterogeneous electrocatalysis is the usage of solid materials to decrease the amount of energy needed to produce chemicals using electricity. It is of core importance for modern life, as it enables production of chemicals, such as chlorine gas and sodium chlorate, needed for e.g. materials and pharmaceuticals production. Fur- thermore, as the need to make a transition to usage of renewable energy sources is growing, the importance for electrocatalysis used for electrolytic production of clean fuels, such as hydrogen, is rising. In this thesis, work aimed at understanding and improving electrocatalysts used for these purposes is presented. A main part of the work has been focused on the selectivity between chlorine gas, or sodium chlorate formation, and parasitic oxygen evolution. An activation of anode surface Ti cations by nearby Ru cations is suggested as a reason for the high chlorine selectivity of the “dimensionally stable anode” (DSA), the standard anode used in industrial chlorine and sodium chlorate production. Furthermore, theoret- ical methods have been used to screen for dopants that can be used to improve the activity and selectivity of DSA, and several promising candidates have been found. Moreover, the connection between the rate of chlorate formation and the rate of parasitic oxygen evolution, as well as the possible catalytic effects of elec- trolyte contaminants on parasitic oxygen evolution in the chlorate process, have been studied experimentally. Additionally, the properties of a Co-doped DSA have been studied, and it is found that the doping makes the electrode more active for hydrogen evolution. Finally, the hydrogen evolution reaction on both RuO2 and the noble-metal-free MoS2 electrocatalyst material has been studied using a combination of experimental and theoretically calculated X-ray photoelectron chemical shifts. In this way, insight into structural changes accompanying hydrogen evolution on these materials is obtained. Keywords: Electrocatalysis, metallic oxides, ruthenium dioxide, titanium dioxide, DSA, doping, selectivity, ab initio modeling, density functional theory i

PDF Image | Studies of Electrode Processes in Industrial Electrosynthesis

studies-electrode-processes-industrial-electrosynthesis-003

PDF Search Title:

Studies of Electrode Processes in Industrial Electrosynthesis

Original File Name Searched:

electrosynthesis.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)