PDF Publication Title:
Text from PDF Page: 014
iScience ll Article SUPPLEMENTAL INFORMATION Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101976. ACKNOWLEDGMENTS This work was supported by Dalian University of Technology. AUTHOR CONTRIBUTIONS M.L contributed to the conception of the study; T.L and H.L executed the experiments. T.L analyzed the data and drafted the manuscript. H.L and H.Z assisted the characterizations and the discussion of the re- sults. All authors discussed the results and commented on the manuscript. OPEN ACCESS DECLARATION OF INTERESTS The authors declare no competing interests. Received: September 19, 2020 Revised: November 18, 2020 Accepted: December 15, 2020 Published: January 22, 2021 REFERENCES Amine, K., Kanno, R., and Tzeng, Y. (2014). Rechargeable lithium batteries and beyond: progress, challenges, and future directions. MRS Bull. 39, 395–401. Biesinger, M.C., Lau, L.W., Gerson, A.R., and Smart, R.S.C. (2010). Smart resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898. Bouazizi,S.,Nasr,S.,Jaıˆdane,N.,andBellissent- Funel, M.C. (2006). Local order in aqueous NaCl solutions and pure water: X-ray scattering and molecular dynamics simulations study. J. Phys. Chem. B 110, 23515–23523. Bu, X., Su, L., Dou, Q., Lei, S., and Yan, X. (2019). A low-cost ‘‘water-in-salt’’ electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J. Mater. Chem. A 7, 7541–7547. Chen, C., Yu, T., Yang, M., Zhao, X., and Shen, X. (2019). An all-solid-state rechargeable chloride ion battery. Adv. Sci. 6, 1802130. Chłopek, J., Morawska-Chocho ́ ł, A., and Paluszkiewicza, C. (2008). FTIR evaluation of PGLA-Carbon fibres composite behaviour under ‘in vivo’ conditions. J. Mol. Struct. 875, 101–107. Cresce, A., Gobet, M., Borodin, O., Peng, J., Russell, S.M., Wikner, E., Fu, A., Hu, L., Lee, H.S., Zhang, Z., et al. (2015). Anion solvation in carbonate-based electrolytes. J. Phys. Chem. C 119, 27255–27264. Ding, X., Huang, X., Jin, J., Ming, H., Wang, L., and Ming, J. (2018). Advanced and safer lithium- ion battery based on sustainable electrodes. J. Power Sources 379, 53–59. Ellis, B., and Nazar, L. (2012). Sodium and sodium- ion energy storage batteries. Mater. Sci. 16, 168–177. Frost, R., Erickson, K., and Weier, M. (2004). Hydrogen bonding in selected vanadates: a Raman and infrared spectroscopy study. Spectrochim. Acta A 60, 2419–2423. Gao, P., Zhao, X., Zhao-Karger, Z., Diemant, T., Behm, R.J., and Fichtner, M. (2014). Vanadium oxychloride/magnesium electrode systems for chloride ion batteries. ACS Appl. Mater. Interfaces 6, 22430–22435. Gao, P., Reddy, M.A., Mu, X., Diemant, T., Zhang, L., Zhao-Karger, Z., Chakravadhanula, V., Clemens, O., Behm, R.J., and Fichtner, M. (2016). VOCl as a cathode for rechargeable chloride ion batteries. Angew. Chem. 128, 4357–4362. Golczak, S., Kanciurzewska, A., Fahlman, M., Langer, K., and Langer, J.J. (2008). Langer Comparative XPS surface study of polyaniline thin films. Solid State Ionics 179, 2234–2239. Guo, J., Ma, Y., Zhao, K., Wang, Y., Yang, B., Cui, J., and Yan, X. (2019). High-performance and ultra-stable Aqueous supercapacitors based on a green and low-cost water-in-salt electrolyte. ChemElectroChem 6, 5433–5438. Gussoni, M., and Castiglioni, C. (2000). Use of the CH-stretching band intensity as a tool for evaluating the acidity of hydrogen atoms in hydrocarbons. J. Mol. Struct. 521, 1–18. Jayaprakash, N., Das, S., and Archer, L. (2011). The rechargeable aluminum-ion battery. Chem. Commun. 47, 12610–12612. Jiang, L., Liu, L., Yue, J., Zhang, Q., Zhou, A., Borodin, O., Suo, L., Li, H., Chen, L., Xu, K., et al. (2020). High-voltage aqueous Na-ion battery enabled by inert-cation-assisted water-in-salt electrolyte. Adv. Mater. 32, 1904427. Kakaei, K., Hamidi, M., and Husseindoost, S. (2016). Chlorine-doped reduced graphene oxide nanosheets as an efficient and stable electrode for supercapacitor in acidic medium. J. Colloid Interf. Sci. 479, 121–126. Kim, H., Hong, J., Park, K.Y., Kim, H., Kim, S.W., and Kang, K. (2014). Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827. Lakshmi, K., Janas, K., and Shaijumon, M. (2019). Antimonyoxy chloride embedded graphene nanocomposite as efficient cathode material for chloride ion batteries. J. Power Sources 433, 126685. Leonard, D.P., Wei, Z., Chen, G., Du, F., and Ji, X. (2018). Water-in-Salt electrolyte for potassium- ion batteries. ACS Energy Lett. 3, 373–374. Li, W., Yang, Y., Zhang, G., and Zhang, Y. (2015). Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Lett. 15, 1691–1697. Li, H., Han, C., Huang, Y., Huang, Y., Zhu, M., Pei, Z., Xue, Q., Wang, Z., Liu, Z., Tang, Z., et al. (2018a). An extr16emely safe and wearable solid- state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11, 941–951. Li, Z., Mu, X., Zhao-Karger, Z., Diemant, T., Behm, R.J., Ku ̈ bel, C., and Fichtner, M. (2018b). Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self- established metallic layered materials. Nat. Commun. 9, 5115. Liu, A., Li, W., Jin, H., Yu, X., Bu, Y., He, Y., Huang, H., Wang, S., and Wang, J. (2015). The enhanced electrocatalytic activity of graphene co-doped with chlorine and fluorine atoms. Electrochim. Acta 177, 36–42. Luo, J., Cui, W., He, P., and Xia, Y. (2010). Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765. Luo, Z., Zhou, X., and Yu, J. (2014). Mechanical properties of SiC/SiC composites by PIP process with a new precursor at elevated temperature. Mater. Sci. Eng. A 607, 155–161. iScience 24, 101976, January 22, 2021 13PDF Image | aqueous chlorine ion battery
PDF Search Title:
aqueous chlorine ion batteryOriginal File Name Searched:
high-voltage-cl-ion-battery.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)