logo

Electrochemical Mechanism of Molten Salt Electrolysis

PDF Publication Title:

Electrochemical Mechanism of Molten Salt Electrolysis ( electrochemical-mechanism-molten-salt-electrolysis )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 010

Materials 2022, 15, 3956 10 of 11 References as TiO2→Ti4O7→Ti2O3→TiO→Ti. As an intermediate product in the deoxidation pro- cess of TiO2, CaTiO3 can be spontaneously generated among Ca2+, O2−, and TiO2 in the NaCl-CaCl2 system. The dissolution behavior of TiO2 showed that there is no chemical dissolution of TiO2 in the NaCl-CaCl2 molten salt system at 1073 K. Electro-deoxidation thermodynamics and electrochemical studies further confirmed that the reduction of TiO2 to titanium in four steps, and the processes were controlled by diffusion. Author Contributions: Conceptualization, X.M., H.Z. and S.B.; methodology, Z.J., X.M., Z.Y. and Y.Y.; validation, Z.Y., J.L. and H.L.; investigation, H.L., Z.J. and S.B.; resources, J.L., Y.Y. and H.Z. All authors have read and agreed to the published version of the manuscript. Funding: This work was supported by the National Natural Science Foundation of China under Grant No. 52074125, and Tangshan Science and Technology Innovation Team Training Program Project under Grant No. 21130207D. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: Data sharing is not applicable to this article. Conflicts of Interest: The authors declare no conflict of interest. 1. Sibum, H.; Güther, V.; Roidl, O.; Habashi, F.; Wolf, H.U.; Siemers, C. Titanium, Titanium Alloys, and Titanium Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2017. [CrossRef] 2. Istrate, B.; Munteanu, C.; Luca, D.; Earar, K.; Antoniac, I. Tribological tests and SEM analysis for titanium oxide layers. Key Eng. Mater. 2014, 614, 74–79. [CrossRef] 3. Istrate, B.; Munteanu, C.; Strugaru, S.I.; Barca, A.; Biniuc, C.; Iulia, C.C. Influence of time on thermal oxidation of CP-Ti grade II at 850 ◦C. Key Eng. Mater. 2014, 614, 35–40. [CrossRef] 4. Xiao, W.; Wang, D.H. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem. Soc. Rev. 2014, 43, 3215–3228. [CrossRef] [PubMed] 5. Subramanyam, R.B. Some recent innovations in the Kroll process of titanium sponge production. Bull. Mater. Sci. 1993, 16, 433–451. [CrossRef] 6. Nagesh, C.R.V.S.; Rao, C.S.; Ballal, N.B. Mechanism of titanium sponge formation in the Kroll reduction reactor. Metall. Mater. Trans. B 2004, 35, 65–74. [CrossRef] 7. Ono, K.; Suzuki, R.O. A new concept for producing Ti sponge: Calciothermic reduction. JOM 2002, 54, 59–61. [CrossRef] 8. Suzuki, R.O.; Ono, K.; Teranuma, K. Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metall. Mater. Trans. B 2003, 34, 287–295. [CrossRef] 9. Chen, G.Z.; Fray, D.; Farthing, T. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 2000, 407, 361–364. [CrossRef] 10. Abdelkader, A.M.; Kilby, K.T.; Cox, A.; Fray, D.J. DC voltammetry of electro-deoxidation of solid oxides. Chem. Rev. 2013, 113, 2863–2886. [CrossRef] 11. Ma, M.; Wang, D.H.; Wang, W.G.; Hu, X.H.; Jin, X.B.; Chen, G.Z. Extraction of titanium from different titania precursors by the FFC Cambridge process. J. Alloy. Compd. 2006, 420, 37–45. [CrossRef] 12. Ma, T.X.; Luo, X.Y.; Yang, Y.; Hu, M.L.; Wen, L.Y.; Zhang, S.F.; Hu, L.W. Reducing Carbon Contamination by Controlling CO32− Formation During Electrochemical Reduction of TiO2. Metall. Mater. Trans. B 2021, 52, 1061–1070. [CrossRef] 13. Chen, G.Z.; Gordo, E.; Fray, D.J. Direct electrolytic preparation of chromium powder. Metall. Mater. Trans. B 2004, 35, 223–233. [CrossRef] 14. Xiao, W.; Wang, D.H. Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts. Rare Met. 2016, 35, 581–590. [CrossRef] 15. Li, H.; Jia, L.; Liang, J.L.; Yan, H.Y.; Cai, Z.Y.; Reddy, R.G. Study on the direct electrochemical reduction of Fe2O3 in NaCl-CaCl2 melt. Int. J. Electrochem. Sci. 2019, 14, 11267–11278. [CrossRef] 16. Yang, Y.; Luo, X.Y.; Ma, T.X.; Wen, L.Y.; Hu, L.W.; Hu, M.L. Effect of Al on characterization and properties of AlxCoCrFeNi high entropy alloy prepared via electro-deoxidization of the metal oxides and vacuum hot pressing sintering process. J. Alloy. Compd. 2021, 864, 158717. [CrossRef] 17. Yang, Y.; Luo, X.Y.; Ma, T.X.; Hu, L.W.; Wen, L.Y.; Hu, M.L. Formation process of CoCrFeNi high entropy alloy via electro- deoxidization of metal oxides in molten salt. Rare Metal Mat. Eng. 2021, 50, 3116–3124. 18. Jiao, H.; Wang, M.; Tu, J.; Jiao, S. Production of AlCrNbTaTi high entropy alloy via electro-deoxidation of metal oxides. J. Electrochem. Soc. 2018, 165, D574–D579. [CrossRef]

PDF Image | Electrochemical Mechanism of Molten Salt Electrolysis

electrochemical-mechanism-molten-salt-electrolysis-010

PDF Search Title:

Electrochemical Mechanism of Molten Salt Electrolysis

Original File Name Searched:

materials-15-03956.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP