Halogen Hybrid Flow Batteries

PDF Publication Title:

Halogen Hybrid Flow Batteries ( halogen-hybrid-flow-batteries )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

Energies 2022, 15, 7397 17 of 20 77. Hruska, L.W.; Savinell, R.F. Investigation of Factors Affecting Performance of the Iron-Redox Battery. J. Electrochem. Soc. 1981, 128, 18–25. [CrossRef] 78. Skyllas-Kazacos, M.; Kazacos, G.; Poon, G.; Verseema, H. Application of Graphene and Graphene-Based Materials in Clean Energy-Related Devices Minghui. Recent. Adv. UNSW Vanadium-Based Redox Flow Batter. 2010, 34, 182–189. [CrossRef] 79. Zhang, H. Polysulfide-Bromine Flow Batteries (PBBs) for Medium- and Large-Scale Energy Storage; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 9781782420224. 80. Leung, P.; Li, X.; Ponce De León, C.; Berlouis, L.; Low, C.T.J.; Walsh, F.C. Progress in Redox Flow Batteries, Remaining Challenges and Their Applications in Energy Storage. RSC Adv. 2012, 2, 10125–10156. [CrossRef] 81. Lotspeich, C. A Comparative Assessment of Flow Battery Technologies. In Proceedings of the 2002 EESAT Conference, San Francisco, CA, USA, 11–14 November 2002; pp. 15–17. 82. Manufacturing Cost Analysis of 100 and 250 KW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications; United States Department of Energy: Washington, DC, USA, 2016. 83. Bradbury, K. Energy Storage Technology Review; Duke University: Durham, NC, USA, 2010; pp. 1–34. 84. Hart, D.M.; Bonvillian, W.B.; Austin, N. Energy Storage for the Grid: Policy Options for Sustaining Innovation. MIT Energy Initiat. Work. Pap. 2018, 1, 33. 85. Lazard. Lazard’s Levelized Cost of Storage Analysis—Version 7.0; Lazard: New York, NY, USA, 2022. 86. Weber, A.Z.; Perry, M.L.; Zawodzinski, T.A.; Stetson, N.; Johnson, M.; Gyuk, I. Flow Cells for Energy Storage Workshop Summary Report; US Department of Energy: Washington, DC, USA, 2012; p. 39. 87. Ralon, P.; Taylor, M.; Ilas, A.; Diaz-Bone, H.; Kairies, K. Electricity Storage and Renewables: Costs and Markets to 2030; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017; ISBN 978-92-9260-038-9. 88. Howard, W.F.; Spotnitz, R.M. Theoretical Evaluation of High-Energy Lithium Metal Phosphate Cathode Materials in Li-Ion Batteries. J Power Sources 2007, 165, 887–891. [CrossRef] 89. Zang, X.; Shen, C.; Kao, E.; Warren, R.; Zhang, R.; Teh, K.S.; Zhong, J.; Wei, M.; Li, B.; Chu, Y.; et al. Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors. Adv. Mater. 2018, 30, 1–8. [CrossRef] [PubMed] 90. Wang, H.; Xu, Z.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X.; Zahiri, B.; Olsen, B.C.; Holt, C.M.B.; et al. Hybrid Device Employing Three-Dimensional Arrays of MnO in Carbon Nanosheets Bridges Battery-Supercapacitor Divide. Nano Lett. 2014, 14, 1987–1994. [CrossRef] 91. Choudhary, N.; Li, C.; Chung, H.S.; Moore, J.; Thomas, J.; Jung, Y. High-Performance One-Body Core/Shell Nanowire Superca- pacitor Enabled by Conformal Growth of Capacitive 2D WS2 Layers. ACS Nano 2016, 10, 10726–10735. [CrossRef] 92. Izadi-Najafabadi, A.; Yamada, T.; Futaba, D.N.; Yudasaka, M.; Takagi, H.; Hatori, H. High-Power Supercapacitor Electrodes Nanotube Composite. ACS Nano 2011, 5, 811–819. [CrossRef] 93. Sun, S.; Zhai, T.; Liang, C.; Savilov, S.V.; Xia, H. Boosted Crystalline/Amorphous Fe2O3-δ Core/Shell Heterostructure for Flexible Solid-State Pseudocapacitors in Large Scale. Nano Energy 2018, 45, 390–397. [CrossRef] 94. Ahmadi, S.; Bathaee, S.M.T.; Hosseinpour, A.H. Improving Fuel Economy and Performance of a Fuel-Cell Hybrid Electric Vehicle (Fuel-Cell, Battery, and Ultra-Capacitor) Using Optimized Energy Management Strategy. Energy Convers. Manag. 2018, 160, 74–84. [CrossRef] 95. Pan, H.; Han, K.S.; Engelhard, M.H.; Cao, R.; Chen, J.; Zhang, J.G.; Mueller, K.T.; Shao, Y.; Liu, J. Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition. Adv. Funct. Mater. 2018, 28, 1–7. [CrossRef] 96. Evers, S.; NaZar, L. New Approaches for High Energy Density Lithium -Sulfur Battery Cathodes. Acc. Chem. Res. 2012, 46, 1135–1143. [CrossRef] 97. Xu, J.; Zhang, W.; Fan, H.; Cheng, F.; Su, D.; Wang, G. Promoting Lithium Polysulfide/Sulfide Redox Kinetics by the Catalyzing of Zinc Sulfide for High Performance Lithium-Sulfur Battery. Nano Energy 2018, 51, 73–82. [CrossRef] 98. Zhang, S.S. Liquid Electrolyte Lithium/Sulfur Battery: Fundamental Chemistry, Problems, and Solutions. J. Power Sources 2013, 231, 153–162. [CrossRef] 99. Aurbach, D. Introduction to the Focus Issue on Lithium-Sulfur Batteries: Materials, Mechanisms, Modeling, and Applications. J. Electrochem. Soc. 2018, 165, Y1. [CrossRef] 100. Du,H.;Li,S.;Qu,H.;Lu,B.;Wang,X.;Chai,J.;Zhang,H.;Ma,J.;Zhang,Z.;Cui,G.StableCyclingofLithium-SulfurBattery Enabled by a Reliable Gel Polymer Electrolyte Rich in Ester Groups. J. Memb. Sci. 2018, 550, 399–406. [CrossRef] 101. Carbone,L.;Coneglian,T.;Gobet,M.;Munoz,S.;Devany,M.;Greenbaum,S.;Hassoun,J.ASimpleApproachforMakinga Viable, Safe, and High-Performances Lithium-Sulfur Battery. J. Power Sources 2018, 377, 26–35. [CrossRef] 102. Liu,Q.;Chang,Z.;Li,Z.;Zhang,X.FlexibleMetal—AirBatteries:Progress,Challenges,andPerspectives.SmallMethods2017, 1700231, 1–16. [CrossRef] 103. Pan,J.;Li,H.;Sun,H.;Zhang,Y.;Wang,L.;Liao,M.;Sun,X.ALithium—AirBatteryStablyWorkingatHighTemperaturewith High Rate Performance. Small 2017, 1703454, 1–6. [CrossRef] 104. Zhao,Z.;Huang,J.;Peng,Z.Achilles’HeelofLi-AirBatteries:Li2CO3.Angew.Chem.-Int.Ed.2017,57,3874–3886.[CrossRef] 105. Guo,Z.;Li,C.;Liu,J.;Wang,Y.;Xia,Y.ALong-LifeLithium—AirBatteryinAmbientAirwithaPolymerElectrolyteContaininga Redox Mediator. Angew. Chem. 2017, 129, 7613–7617. [CrossRef] 106. Wu,F.;Yu,Y.TowardTrueLithium-AirBatteries.Joule2018,2,815–817.[CrossRef]

PDF Image | Halogen Hybrid Flow Batteries

halogen-hybrid-flow-batteries-017

PDF Search Title:

Halogen Hybrid Flow Batteries

Original File Name Searched:

energies-15-07397-v2.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)