hybrid redox flow batteries with zinc negative electrodes

PDF Publication Title:

hybrid redox flow batteries with zinc negative electrodes ( hybrid-redox-flow-batteries-with-zinc-negative-electrodes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 065

32. Leung, P., J. Palma, E. Garcia-Quismondo, L. Sanz, M.R. Mohamed, and M. Anderson, Evaluation of electrode materials for all-copper hybrid flow batteries. J. Power Sources, 2016; 310: 1-11. 33. Liu, C.C., R.T. Galasco, and R.F. Savinell, Operating performance of an Fe-Ti stationary redox battery in the presence of lead. J. Electrochem. Soc., 1982; 129: 2502-5. 34. Thaller, L.H. Electrically rechargeable REDOX flow cell. US Patent 3,996,064. 1976. 35. Hruska, L.W. and R.F. Savinell, Investigation of factors affecting performance of the iron- redox battery. J. Electrochem. Soc., 1981; 128: 18-25. 36. Skyllas-Kazacos, M., M.H. Chakrabarti, S.A. Hajimolana, F.S. Mjalli, and M. Saleem, Progress in flow battery research and development. J. Electrochem. Soc., 2011; 158: R55-79. 37. Lin, K., Q. Chen, M.R. Gerhardt, L. Tong, S.B. Kim, L. Eisenach, A.W. Valle, D. Hardee, R.G. Gordon, M.J. Aziz, and M.P. Marshak, Alkaline quinone flow battery. Science, 2015; 349: 1529-32. 38. Morrissey, P., Regenesys: a new energy storage technology. Int. J. Ambient Energy, 2000; 21: 213-20. 39. Wills, R.G.A., J. Collins, D. Stratton-Campbell, C.T.J. Low, D. Pletcher, and F.C. Walsh, Developments in the soluble lead-acid flow battery. J. Appl. Electrochem., 2010; 40: 955-965. 40. Fang, B., S. Iwasa, Y. Wei, T. Arai, and M. Kumagai, A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application. Electrochim. Acta, 2002; 47: 3971-76. 41. Leung, P.K., C. Ponce-de-León, C.T.J. Low, A.A. Shah, and F.C. Walsh, Characterization of a zinc–cerium flow battery. J. Power Sources, 2011; 196: 5174-85. 42. Linden, D. and T.B. Reddy, Handbook of batteries. McGraw-Hill. 2002. 43. Leung, P.K., X. Li, C. Ponce de León, L. Berlouis, C.T.J. Low, and F.C. Walsh, Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv., 2012; 2: 10125-56. 44. Ponce de León, C. and F.C. Walsh, Zinc-bromine redox flow batteries, in Encyclopedia of Electrochemical Power Sources, C. Dyer J. Garche, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati, Editor; 2009. p. 487-96. 45. Vincent, C.A. and B. Scrosati, Modern batteries: An Introduction to Electrochemical Power Sources. 2nd ed. Oxford; Burlington, MA: Butterworth Heinemann. 1997. 46. Bradley, C.S. Secondary battery. US Patent 312,802. 1885. 47. Edison, T.A. Reversible galvanic battery. US Patent 678,722. 1901. 48. Vertes, M.A., E.G. Katsoulis, J.E. Oxley, and K. Alfredson, Zinc/air high energy density rechargeable energy storage system. Great Neck, N.Y., USA. Leesona Corp. 1966. 49. Backhurst, J.R., E. Goodridge, R.E. Plimley, and M. Fleischmann, Some aspects of a fluidized zinc/oxygen electrode system. Nature, 1969; 221: 55-7. 65

PDF Image | hybrid redox flow batteries with zinc negative electrodes

hybrid-redox-flow-batteries-with-zinc-negative-electrodes-065

PDF Search Title:

hybrid redox flow batteries with zinc negative electrodes

Original File Name Searched:

Zn_Negative_RFB_Review_24_Jan_2018.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)