logo

hybrid redox flow batteries with zinc negative electrodes

PDF Publication Title:

hybrid redox flow batteries with zinc negative electrodes ( hybrid-redox-flow-batteries-with-zinc-negative-electrodes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 071

120. Spotnitz, R.M., R.P. Kreh, J.T. Lundquist, and P.J. Press, Mediated electrosynthesis with cerium (IV) in methanesulphonic acid. J. Appl. Electrochem., 1990; 20: 209-15. 121. Harrison, S. and A. Theoret, The electrosynthesis of naphthoquinone, and tetrahydroanthraquinone. J. New Mat. Electrochem. Syst., 1999; 2: 1-9. 122. Walsh, F.C., C. Ponce de Léon, L. Berlouis, G. Nikiforidis, L.F. Arenas-Martínez, D. Hodgson, and D. Hall, The development of Zn–Ce hybrid redox flow batteries for energy storage and their continuing challenges. ChemPlusChem, 2015; 80: 288-311. 123. Xie, Z., Q. Liu, Z. Chang, and X. Zhang, The developments and challenges of cerium half- cell in zinc–cerium redox flow battery for energy storage. Electrochim. Acta, 2013; 90: 695- 704. 124. Nikiforidis, G. and W.A. Daoud, Indium modified graphite electrodes on highly zinc containing methanesulfonate electrolyte for zinc-cerium redox flow battery. Electrochim. Acta, 2015; 168: 394-402. 125. Nikiforidis, G., L. Berlouis, D. Hall, and D. Hodgson, A study of different carbon composite materials for the negative half-cell reaction of the zinc cerium hybrid redox flow cell. Electrochim. Acta, 2013; 113: 412-23. 126. Nikiforidis, G., L. Berlouis, D. Hall, and D. Hodgson, Evaluation of carbon composite materials for the negative electrode in the zinc–cerium redox flow cell. J. Power Sources, 2012; 206: 497-503. 127. Leung, P.K., C. Ponce-de-León, C.T.J. Low, and F.C. Walsh, Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery. Electrochim. Acta, 2011; 56: 6536-46. 128. Arenas, L.F., C.P.d. León, and F.C. Walsh., Study of hydrogen evolution inhibitors for zinc electrodeposition. Unpublished results. 129. Van Parys, H., G. Telias, V. Nedashkivskyi, B. Mollay, I. Vandendael, S. Van Damme, J. Deconinck, and A. Hublin, On the modeling of electrochemical systems with simultaneous gas evolution. Case study: The zinc deposition mechanism. Electrochim. Acta, 2010; 55: 5709-18. 130. Nikiforidis, G., R. Cartwright, D. Hodgson, D. Hall, and L. Berlouis, Factors affecting the performance of the Zn-Ce redox flow battery. Electrochim. Acta, 2014; 140: 139-44. 131. Zhang, Q.B., Y.X. Hua, T.G. Dong, and D.G. Zhou, Effects of temperature and current density on zinc electrodeposition from acidic sulfate electrolyte with [BMIM]HSO4 as additive. J. Appl. Electrochem., 2009; 39: 1207-16. 132. Zhang, Q. and Y. Hua, Effects of 1-butyl-3-methylimidazolium hydrogen sulfate- [BMIM]HSO4 on zinc electrodeposition from acidic sulfate electrolyte. J. Appl. Electrochem., 2008; 39: 261-7. 71

PDF Image | hybrid redox flow batteries with zinc negative electrodes

hybrid-redox-flow-batteries-with-zinc-negative-electrodes-071

PDF Search Title:

hybrid redox flow batteries with zinc negative electrodes

Original File Name Searched:

Zn_Negative_RFB_Review_24_Jan_2018.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP