PDF Publication Title:
Text from PDF Page: 072
133. Piron, D.L., D. Mathieu, and M. D'Amboise, Zinc electrowinning with 2-butyne-1,4-diol. Can. J. Chem. Eng., 1987; 65: 685-8. 134. Fenelon, A.M. and C.B. Breslin, An electrochemical study of the formation of benzotriazole surface films on copper, zinc and a copper–zinc alloy. J. Appl. Electrochem., 2001; 31: 509- 16. 135. Tripathy, B.C., S.C. Das, P. Singh, and G.T. Hefter, Zinc electrowinning from acidic sulphate solutions. Part III: Effects of quaternary ammonium bromides. J. Appl. Electrochem., 1999; 29: 1229-35. 136. Oliveira, E.M. and I.A. Carlos, Voltammetric and morphological characterization of zinc electrodeposition from acid electrolytes containing boric–polyalcohol complexes. J. Appl. Electrochem., 2008; 38: 1203-10. 137. Sato, R., Crystal growth of electrodeposited zinc: An electron diffraction and electron microscopic study. J. Electrochem. Soc., 1959; 106: 206-11. 138. Yano, M., S. Fujitani, K. Nishio, Y. Akai, and M. Kurimura, Effect of additives in zinc alloy powder on suppressing hydrogen evolution. J. Power Sources, 1998; 74: 129-34. 139. Ichino, R., C. Cachet, and R. Wiart, Mechanism of zinc electrodeposition in acidic sulfate electrolytes containing Pb2+ ions. Electrochim. Acta, 1996; 41: 1031-39. 140. Hosny, A.Y., Electrowinning of zinc from electrolytes containing anti-acid mist surfactant. Hydrometallurgy, 1993; 32: 261-9. 141. Cachet, C. and R. Wiart, Influence of a perfluorinated surfactant on the mechanism of zinc deposition in acidic electrolytes. Electrochim. Acta, 1999; 44: 4743-51. 142. Tripathy, B.C., S.C. Das, P. Singh, G.T. Hefter, and V.N. Misra, Zinc electrowinning from acidic sulphate solutions Part IV: Effects of perfluorocarboxylic acids. J. Electroanal Chem., 2004; 565: 49-56. 143. Troquet, M. and J. Pagetti, Inhibition of metallic corrosion in an acid medium by means of phosphonium salts: zinc and iron. Mater. Corros., 1983; 34: 557-62. 144. Tripathy, B.C., S.C. Das, G.T. Hefter , and P. Singh Zinc electrowinning from acidic sulfate solutions: Part I: Effects of sodium lauryl sulfate. J. Appl. Electrochem., 1997; 27: 673-8. 145. Mouanga, M., L. Ricq, J. Douglade, and P. Berçot, Effects of some additives on the corrosion behaviour and preferred orientations of zinc obtained by continuous current deposition. J. Appl. Electrochem., 2007; 37: 283-9. 146. Leung, P.K., C. Ponce de León, F.J. Recio, P. Herrasti, and F.C. Walsh, Corrosion of the zinc negative electrode of zinc–cerium hybrid redox flow batteries in methanesulfonic acid. J. Appl. Electrochem., 2014; 44: 1025-35. 147. Vijayabarathi, T., D. Velayutham, and M. Noel, Influence of aromatic reactants and products involved in the two stage electrochemical oxidation on the voltammetric behaviour of Ce(IV)/Ce(III) redox couple. J. Appl. Electrochem., 2001; 31: 979-86. 72PDF Image | hybrid redox flow batteries with zinc negative electrodes
PDF Search Title:
hybrid redox flow batteries with zinc negative electrodesOriginal File Name Searched:
Zn_Negative_RFB_Review_24_Jan_2018.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |