PDF Publication Title:
Text from PDF Page: 073
148. Devadoss, V., M. Noel, K. Jayaraman, and C. Ahmed Basha, Electrochemical behaviour of Mn3+/Mn2+, Co3+/Co2+ and Ce4+/Ce4+ redox mediators in methanesulfonic acid. J. Appl. Electrochem., 2003; 33: 319-23. 149. Xie, Z., D. Zhou, F. Xiong, S. Zhang, and K. Huang, Cerium-zinc redox flow battery: positive half-cell electrolyte studies. J. Rare Earth, 2011; 29: 567-73. 150. Nikiforidis, G., L. Berlouis, D. Hall, and D. Hodgson, An electrochemical study on the positive electrode side of the zinc–cerium hybrid redox flow battery. Electrochim. Acta, 2014; 115: 621-9. 151. Xiong, F., D. Zhou, Z. Xie, and Y. Chen, A study of the Ce3+/Ce4+ redox couple in sulfamic acid for redox battery application. Appl. Energy, 2012; 99: 291-6. 152. Leung, P.K., C. Ponce de León, C.T.J. Low, and F.C. Walsh, Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery. Electrochim. Acta, 2011; 56: 2145-53. 153. Nikiforidis, G., L. Berlouis, D. Hall, and D. Hodgson, Charge/discharge cycles on Pt and Pt- Ir based electrodes for the positive side of the zinc-cerium hybrid redox flow battery. Electrochim. Acta, 2014; 125: 176-82. 154. Xie, Z., F. Xiong, and D. Zhou, Study of the Ce3+/Ce4+ redox couple in mixed-acid media (CH3SO3H and H2SO4) for redox flow battery application. Energy Fuels, 2011; 25: 2399- 404. 155. Nikiforidis, G. and W.A. Daoud, Effect of mixed acid media on the positive side of the hybrid zinc-cerium redox flow battery. Electrochim. Acta, 2014; 141: 255-62. 156. Leung, P.K., C. Ponce de León, and F.C. Walsh, The influence of operational parameters on the performance of an undivided zinc–cerium flow battery. Electrochim. Acta, 2012; 80: 7- 14. 157. Arenas, L.F., F.C. Walsh, and C. Ponce de León, The importance of cell geometry and electrolyte properties to the cell potential of Zn-Ce hybrid flow batteries. J. Electrochem. Soc., 2016; 163: A5170-9. 158. Arenas, L.F. An electrochemical engineering approach to improvements in the zinc-cerium redox flow battery. PhD thesis. Faculty of Engineering and the Environment University of Southampton. UK. 2017. 159. Yu, X. and A. Manthiram, A zinc–cerium cell for energy storage using a sodium-ion exchange membrane. Adv. Sustainable Syst., 2017. 160. Chakkaravarthy, C., A.K.A. Waheed, and H.V.K. Udupa, Zinc—air alkaline batteries — A review. J. Power Sources, 1981; 6: 203-28. 161. Li, Y. and H. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev., 2014; 43: 5257-75. 162. Pei, P., K. Wang, and Z. Ma, Technologies for extending zinc–air battery’s cyclelife: A review. Appl. Energy, 2014; 128: 315-24. 73PDF Image | hybrid redox flow batteries with zinc negative electrodes
PDF Search Title:
hybrid redox flow batteries with zinc negative electrodesOriginal File Name Searched:
Zn_Negative_RFB_Review_24_Jan_2018.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)