hybrid redox flow batteries with zinc negative electrodes

PDF Publication Title:

hybrid redox flow batteries with zinc negative electrodes ( hybrid-redox-flow-batteries-with-zinc-negative-electrodes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 075

178. Ito, Y., M. Nyce, R. Plivelich, M. Klein, D. Steingart, and S. Banerjee, Zinc morphology in zinc–nickel flow assisted batteries and impact on performance. J. Power Sources, 2011; 196: 2340-5. 179. Jiratchayamaethasakul, C., N. Srijaroenpramong, T. Bunyangyuen, W. Arpavate, N. Wongyao, A. Therdthianwong, and S. Therthianwong, Effects of anode orientation and flow channel design on performance of refuelable zinc-air fuel cells. J. Appl. Electrochem., 2014; 44: 1205-18. 180. Smedley, S.I. and X.G. Zhang, A regenerative zinc–air fuel cell. J. Power Sources, 2007; 165: 897-904. 181. Parker, J.F., C.N. Chervin, E.S. Nelson, D.R. Rolison, and J.W. Long, Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling. Energy Environ. Sci., 2014; 7: 1117-24. 182. Yan, Z., E. Wang, L. Jiang, and G. Sun, Superior cycling stability and high rate capability of three-dimensional Zn/Cu foam electrodes for zinc-based alkaline batteries. RSC Adv., 2015; 5: 83781-7. 183. Shaigan, N., W. Qu, and T. Takeda, Morphology control of electrodeposited zinc from alkaline zincate solutions for rechargeable zinc air batteries. ECS Trans., 2010; 28: 35-44. 184. Wang, K., P. Pei, Z. Ma, H. Xu, P. Li, and X. Wang, Morphology control of zinc regeneration for zinc–air fuel cell and battery. J. Power Sources, 2014; 271: 65-75. 185. Wang, K., P. Pei, Z. Ma, H. Chen, H. Xu, D. Chen, and X. Wang, Dendrite growth in the recharging process of zinc-air batteries. J. Mater. Chem. A, 2015; 3: 22648-55. 186. Wang, Z.-L., D. Xu, J.-J. Xu, and X.-B. Zhang, Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev., 2014; 43: 7746-86. 187. Kinoshita, K., Electrochemical Oxygen Technology. John Wiley & Sons. 1992. 188. Vielstich, W., A. Lamm, and H.A. Gasteiger, Handbook of Fuel Cells. Wiley. 2003. 189. L'Her, M., Redox Properties, Electrochemistry of Oxygen, in Encyclopedia of Electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA; 2007. 190. Pletcher, D. and X. Li, Prospects for alkaline zero gap water electrolysers for hydrogen production. Int. J. Hydrogen Energy, 2011; 36: 15089-104. 191. Cao, R., J.-S. Lee, M. Liu, and J. Cho, Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater., 2012; 2: 816-29. 192. Cheng, F. and J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev., 2012; 41: 2172-92. 193. Trotochaud, L. and S.W. Boettcher, Precise oxygen evolution catalysts: Status and opportunities. Scripta Mater., 2014; 74: 25-32. 194. Kraytsberg, A. and Y. Ein-Eli, The impact of nano-scaled materials on advanced metal–air battery systems. Nano Energy, 2013; 2: 468-80. 75

PDF Image | hybrid redox flow batteries with zinc negative electrodes

hybrid-redox-flow-batteries-with-zinc-negative-electrodes-075

PDF Search Title:

hybrid redox flow batteries with zinc negative electrodes

Original File Name Searched:

Zn_Negative_RFB_Review_24_Jan_2018.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com (Standard Web Page)