logo

hybrid redox flow batteries with zinc negative electrodes

PDF Publication Title:

hybrid redox flow batteries with zinc negative electrodes ( hybrid-redox-flow-batteries-with-zinc-negative-electrodes )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 076

195. Chen, G., S.R. Bare, and T.E. Mallouk, Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J. Electrochem. Soc., 2002; 149: A1092- 9. 196. Ioroi, T., Z. Siroma, N. Fujiwara, S.-i. Yamazaki, and K. Yasuda, Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells. Electrochem. Commun., 2005; 7: 183-8. 197. Wang, Y.-J., D.P. Wilkinson, and J. Zhang, Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev., 2011; 111: 7625-51. 198. Lee, D.U., J.-Y. Choi, K. Feng, H.W. Park, and Z. Chen, Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries. Adv. Energy Mater., 2014; 4: 13101389-494. 199. Li, P.-C., C.-C. Hu, T.-H. You, and P.-Y. Chen, Development and characterization of bi- functional air electrodes for rechargeable zinc-air batteries: Effects of carbons. Carbon, 2017; 111: 813-21. 200. Sumboja, A., X. Ge, G. Zheng, F.W.T. Goh, T.S.A. Hor, Y. Zong, and Z. Liu, Durable rechargeable zinc-air batteries with neutral electrolyte and manganese oxide catalyst. J. Power Sources, 2016; 332: 330-6. 201. Mainar, A.R., L.C. Colmenares, O. Leonet, F. Alcaide, J.J. Iruin, S. Weinberger, V. Hacker, E. Iruin, I. Urdanpilleta, and J. A. Blazquez, Manganese oxide catalysts for secondary zinc air batteries: from electrocatalytic activity to bifunctional air electrode performance. Electrochim. Acta, 2016; 217: 80-91. 202. Zloczewska, A. and M. Jönsson-Niedziolka, Efficient air-breathing biocathodes for zinc/oxygen batteries. J. Power Sources, 2013; 228: 104-11. 203. Li, X., D. Pletcher, A.E. Russell, F.C. Walsh, R.G.A. Wills, S.F. Gorman, S.W.T Price, and S.J. Thompson, A novel bifunctional oxygen GDE for alkaline secondary batteries. Electrochem. Commun., 2013; 34: 228-30. 204. Price, S.W.T., S. Thompson, X. Li, S. Gorman, D. Pletcher, A. Russell, F.C. Walsh, and R.G.A Wills, The fabrication of a bifunctional oxygen GDE without carbon components for alkaline secondary batteries. J. Power Sources, 2014; 259: 43-49. 205. Pletcher, D., X. Li, S. Price, A. Russell, T. Sönmez, and S. Thompson, Comparison of the spinels Co3O4 and NiCo2O4 as bifunctional oxygen catalysts in alkaline media. Electrochim. Acta, 2016; 188: 286-93. 206. Wei, L., H.E. Karahan, S. Zhai, H. Liu, X. Chen, Z. Zhou, Y. Lei, Z. Liu, and Y. Chen, Amorphous bimetallic oxide–graphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Adv. Mater., 2017; Aug: 1701410. 207. Bidault, F., D.J.L. Brett, P.H. Middleton, and N.P. Brandon, Review of gas diffusion cathodes for alkaline fuel cells. J. Power Sources, 2009; 187: 39-48. 76

PDF Image | hybrid redox flow batteries with zinc negative electrodes

hybrid-redox-flow-batteries-with-zinc-negative-electrodes-076

PDF Search Title:

hybrid redox flow batteries with zinc negative electrodes

Original File Name Searched:

Zn_Negative_RFB_Review_24_Jan_2018.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP