PDF Publication Title:
Text from PDF Page: 077
208. Drillet, J.F., F. Holzer, T. Kallis, S. Muller, and V.M. Schmidt, Influence of CO2 on the stability of bifunctional oxygen electrodes for rechargeable zinc/air batteries and study of different CO2 filter materials. Phys. Chem. Chem. Phys., 2001; 3: 368-71. 209. Sato, M., M. Ohta, and M. Sakaguchi, Effect of carbon dioxide on electrochemical stability of gas diffusion electrodes in alkaline solution. Electrochim. Acta, 1990; 35: 945-50. 210. Cheng, H.-H. and C.-S. Tan, Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed. J. Power Sources, 2006; 162: 1431-6. 211. Oy Hydrocell Limited. Air cleaners, carbon-dioxide filters. http://www.hydrocell.fi/en/air- cleaners-carbon-dioxide-filters/general-observations/; 2017 [accessed 29.08.17]. 212. Fujiwara, N., M. Yao, Z. Siroma, H. Senoh, T. Ioroi, and K. Yasuda, Reversible air electrodes integrated with an anion-exchange membrane for secondary air batteries. J. Power Sources, 2011; 196: 808-13. 213. Dewi, E.L., K. Oyaizu, H. Nishide, and E. Tsuchida, Cationic polysulfonium membrane as separator in zinc–air cell. J. Power Sources, 2003; 115: 149-52. 214. Toussaint, G., P. Stevens, L. Akrour, R. Rouget, and F. Fourgeot, Development of a rechargeable zinc-air battery. ECS Trans., 2010; 28: 25-34. 215. Li, Y., M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang, and H. Dai, Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. Commun., 2013; 4: 1-7. 216. Postula, J.J. and R. Thacker, On the use of third electrodes in a secondary zinc-air battery. Energy Conver. Manage, 1970; 10: 45-9. 217. Wang, K., P. Pei, Z. Ma, H. Chen, H. Xu, D. Chen, and H. Xing, Growth of oxygen bubbles during recharge process in zinc-air battery. J. Power Sources, 2015; 296: 40-5. 218. Bockelmann, M., U. Kunz, and T. Turek, Electrically rechargeable zinc-oxygen flow battery with high power density. Electrochem. Commun., 2016; 69: 24-7. 219. Ross, P., A new concept in an electrically rechargeable zinc-air alkaline battery. Lawrence Berkeley National Laboratory. University of California. 2010. 220. Müller, S., O. Haas, C. Schlatter, and C. Comninellis, Development of a 100 W rechargeable bipolar zinc/oxygen battery. J. Appl. Electrochem., 1998; 28: 305-10. 221. Ma, H., B. Wang, Y. Fan, and W. Hong, Development and characterization of an electrically rechargeable zinc-air battery stack. Energies, 2014; 7: 6549-57. 222. Powerzinc Electric Inc. Powerzinc. http://www.powerzinc.com/; 2017 [accessed 29.08.17]. 223. Cooper, J., Powering future vehicles with the refuelable zinc/air battery. LLNL Sci. Technol. Rev., 1995: 7-13. 224. Pei, P., Z. Ma, K. Wang, X. Wang, M. Song, and H. Xu, High performance zinc air fuel cell stack. J. Power Sources, 2014; 249: 13-20. 77PDF Image | hybrid redox flow batteries with zinc negative electrodes
PDF Search Title:
hybrid redox flow batteries with zinc negative electrodesOriginal File Name Searched:
Zn_Negative_RFB_Review_24_Jan_2018.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |