PDF Publication Title:
Text from PDF Page: 014
Membranes 2022, 12, 1228 14 of 16 References The reasons for the decrease in capacity utilization from cycle to cycle are bromine loss and anode poisoning. These negative effects can be minimized by the use of less bromine- absorbing materials and bromine-tolerant anode catalysts, respectively. To create a durable hydrogen-bromate flow battery, it is necessary to use electrodes [56–61] to improve the coulombic, voltaic and energy efficiency. Author Contributions: Conceptualization, N.V.K., D.V.K. and M.A.V.; methodology and validation, M.M.P. and A.E.A.; experimental analysis, D.V.K., O.A.G., P.A.L. and A.T.G. All authors have read and agreed to the published version of the manuscript. Funding: The reported study was funded by RFBR, project number 20-33-90315. D.V. Konev and O.A. Goncharova analyzed the results of experiments within the framework of the state task (No. AAAA-A19-119061890019-5). Institutional Review Board Statement: Not applicable. Conflicts of Interest: The authors declare no conflict of interest. 1. Perry, M.; Weber, A. Advanced Redox-Flow Batteries: A Perspective. J. Electrochem. Soc. 2016, 1, A5064. [CrossRef] 2. Petrov, M.M.; Modestov, A.D.; Konev, D.V.; Antipov, A.E.; Loktionov, P.A. Pichugov, R.D.; Kartashova, N.V.; Glazkov, A.T.; Abunaeva, L.Z.; Andreev, V.N.; et al. Redox flow batteries: Role in modern electric power industry and comparative characteristics of the main types. Russ. Chem. Rev. 2021, 90, 677. [CrossRef] 3. Leung, P.; Shah, A.A.; Sanz, L.; Flox, C.; Morante, J.R.; Xu, Q.; Mohamed, M.R.; Ponce de Leon, C.; Walsh, F.C. Recent developments in organic redox flow batteries: A critical review. J. Power Sources 2017, 360, 243. [CrossRef] 4. Sun, C.; Zhang, H. Review of the Development of First-Generation Redox Flow Batteries: Iron-Chromium System. ChemSusChem 2021, 15, e202101798. [CrossRef] [PubMed] 5. Zhang, H.; Sun, C. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: A review. J. Power Sources 2021, 493, 229445. [CrossRef] 6. Glazkov, A.T.; Antipov, A.E.; Konev, D.V.; Pichugov, R.D.; Petrov, M.M.; Kartashova, N.V.; Loktionov, P.A.; Averina, J.M.; Plotko, I.I. Dataset of a vanadium redox flow battery 10 membrane-electrode assembly stack. Data Brief 2020, 31, 105840. [CrossRef] 7. Petrov, M.M.; Pichugov, R.D.; Loktionov, P.A.; Antipov, A.E.; Usenko, A.A.; Konev, D.V.; Vorotyntsev, M.A.; Mintsev, V.B. Test Cell for Membrane Electrode Assembly of the Vanadium Redox Flow Battery. Dokl. Phys. Chem. 2020, 491, 39. [CrossRef] 8. Pichugov, R.D.; Konev, D.V.; Petrov, M.M.; Antipov, A.E.; Loktionov, P.A.; Abunaeva, L.Z.; Usenko, A.A.; Vorotyntsev, M.A. Electrolyte Flow Field Variation: A Cell for Testing and Optimization of Membrane Electrode Assembly for Vanadium Redox Flow Batteries. ChemPlusChem 2020, 85, 1919. [CrossRef] 9. Huang, Z.; Mu, A. Research and analysis of performance improvement of vanadium redox flow battery in microgrid: A technology review. Int. J. Energy Res. 2021, 45, 14170. [CrossRef] 10. Loktionov, P.; Kartashova, N.; Konev, D.; Abunaeva, L.; Antipov, A.; Ruban, E.; Terent’ev, A.; Gvozdik, N.; Lyange, M.; Usenko, A. Fluoropolymer impregnated graphite foil as a bipolar plates of vanadium flow battery. Int. J. Energy Res. 2021, 46, 10123–10132. [CrossRef] 11. Modestov, A.D.; Andreev, V.N.; Antipov, A.E.; Petrov, M.M. Novel Aqueous Zinc–Halogenate Flow Batteries as an Offspring of Zinc–Air Fuel Cells for Use in Oxygen-Deficient Environment. Energy Technol. 2021, 9, 2100233. [CrossRef] 12. Kim, M.; Yun, D.; Jeon, J. Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in Zinc–Bromide flow battery. J. Power Sources 2019, 438, 227020. [CrossRef] 13. Huang, Q.; Yang, J.; Ng, C.B.; Jia, C.; Wang, Q. A redox flow lithium battery based on the redox targeting reactions between LiFePO4 and iodide. Energy Environ. Sci. 2016, 9, 917. [CrossRef] 14. Yang, F.; Mousavie, S.M.A.; Oh, T.K.; Yang, T.; Lu, Y.; Farley, C.; Bodnar, R.J.; Niu, L.; Qiao, R.; Li, Z. Sodium–Sulfur Flow Battery for Low-Cost Electrical Storage. Adv. Energy Mater. 2018, 8, 1701991. [CrossRef] 15. Wei, X.; Xu, W.; Vijayakumar, M.; Cosimbescu, L.; Liu, T.; Sprenkle, V.; Wang, W. TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries. Adv. Mater. 2014, 26, 7649. [CrossRef] 16. Cho, K.; Ridgway, P.; Weber, A.; Haussener, S.; Battaglia, V.; Srinivasan, V. High Performance Hydrogen/Bromine Redox Flow Battery for Grid-Scale Energy Storage. J. Electrochem. Soc. 2012, 159, A1806. [CrossRef] 17. Perry, M.; Darling, R.; Zaffou, R. High Power Density Redox Flow Battery Cells. ECS Trans. 2013, 53, 7. [CrossRef] 18. Oh, K.; Weber, A.Z.; Ju, H. Study of bromine species crossover in H2/Br2 redox flow batteries. Int. J. Hydrogen Energy 2017, 42, 3753–3766. [CrossRef] 19. Cho, K.; Tucker, M.; Ding, M.; Ridgway, P.; Battaglia, V.; Srinivasan, V.; Weber, A. Cyclic Performance Analysis of Hydro- gen/Bromine Flow Batteries for Grid-Scale Energy Storage. ChemPlusChem 2015, 80, 402. [CrossRef] 20. Modestov, A.; Kartashova, N.; Pichugov, R.; Petrov, M.; Antipov, A.; Abunaeva, L. Bromine Crossover in Operando Analysis of Proton Exchange Membranes in Hydrogen−Bromate Flow Batteries. Membranes 2022, 12, 815. [CrossRef]PDF Image | Hydrogen-Bromate Flow Battery
PDF Search Title:
Hydrogen-Bromate Flow BatteryOriginal File Name Searched:
membranes-12-01228-v2.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |