logo

MOLTEN SALT ELECTROLYSIS

PDF Publication Title:

MOLTEN SALT ELECTROLYSIS ( molten-salt-electrolysis )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 042

42 Xiao Y. Yan and Derek J. Fray [22] Rapp, B. (2006). Electrowinning aluminum, Materialstoday, 9 (12), p. 6. [23] Rapp, R.A. (1999). Method and apparatus featuring a non-consumable anode for the electrowinning of aluminium, US Pat. 5,942,097, Aug. 24, 1999. [24] Rapp, R.A. (2000). Method featuring a non-consumable anode for the electrowinning of aluminum, US Pat. 6,039,862, Mar. 21, 2000. [25] Rapp, R.A. and Zhang, Y.S. (2002). Fate of SOFC-type inert anode for production of primary aluminum, Light Metals 2002, Schneider, W., ed., TMS, Warrendale, PA, pp. 463-468. [26] Yang, X. and Fray, D.J. (1997). Simulation of cells with anodes of large surface area for electrolysis of alumina dissolved in a chloride melt, Trans. IMM C, 106, pp. C27- 33. [27] Rapp, R.A. and Zhang, Y.S. (2002). An alternate fused electrolyte/solvent suited to the SOFC-type anode for electrowinning aluminum, Light Metals 2002, Schneider, W., ed., TMS, Warrendale, PA, pp. 469-474. [28] Yan, X.Y. and Lanyon, M.R. (2008). Chemical and electrochemical reactions in the Al- Al2O3-Na2SO4 system at 927 °C, Light Metals 2008, DeYoung, D.H., ed., TMS, Warrendale, P A, pp. 523-528. [29] Fray, D.J. (1980). Potential for fused salt electrolysis in metal winning and refining, In: Energy considerations in electrolytic processes, Soc. Chem. Ind., London, pp. 99-111. [30] Mantell, C.L. (1960). Electrochem. Eng., McGraw-Hill, New York. [31] Strelets, K.L. (1977). Electrolytic production of magnesium, The United States-Israel Binational Science Foundation, Jerusalem. [32] Jarrett, N. (1981). Advances in the smelting of magnesium, Metall. Treatises, Tien, J.K. and Elliott, J.F., ed., AIME, Warrendale, PA, pp. 159-169. [33] Kipouros, G.J. and Sadway, D.R. (1986). The chemistry and electrochemistry of magnesium production, In: Adv. Molten Salt Chem., 6, Mamantov, G. and Braunstein, J., ed., Amgterdam, Elsevier, pp. 127-209. [34] Weert, G.V., Amant, G.S., and Rejaee, M. (2003). Electrolytic magnesium production with hydrogen chloride gas generation at the anode instead of chlorine, Electrochemistry in mineral and metal processing VI, Proceedings of inter. Symp., Doyle, F.M., Kelsall, G.H., and Woods, R., ed., The Electrochemical Society, Inc., Pennington, New Jersey, pp. 391-400. [35] Yan, X.Y., Mousa, A, Pownceby, M., Cooksey, M., McDonald, K., and Lanyon, M (2009). Polycrystalline Nb-Doped TiO2: Synthesis, Electrical Conductivity, and Its Use as Inert Anodes for Magnesium Electrowinning Cells (to be submitted to J. Electrochem. Soc.). [36] Mousa, A, Yan, X.Y., Pownceby, M., Cooksey, M., McDonald, K., and Lanyon, M. (2006). Inert anode for magnesium electrowinning, Magnesium Technology 2006, Luo, A.A., Neelameggham, N.R., and Beels, R.S., ed., TMS, Warrendale, PA, pp. 13-18. [37] Yan, X.Y., Li, N., and Grimsey, E.J. (1996). Liquidus temperature measurements for the molten MgCl2-NaCl and BaCl2-NaCl systems, AusIMM 1996 Annual Conf., Perth, Australia, March, pp. 213-217. [38] Sharma, R.A. (1994). Method for producing magnesium metal from magnesium oxide, U.S. Pat. 5,279,716, Jan. 18, 1994. [39] Sharma, R.A. (1996). A new electrolytic magnesium production process, JOM, October, pp. 39-43.

PDF Image | MOLTEN SALT ELECTROLYSIS

molten-salt-electrolysis-042

PDF Search Title:

MOLTEN SALT ELECTROLYSIS

Original File Name Searched:

Molten-Salt-Electrolysis-Chapter-6.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP