PDF Publication Title:
Text from PDF Page: 043
Molten Salt Electrolysis for Sustainable Metals Extraction and Materials Processing 43 [40] Lu, H.M., Jia, W.T., Liao, C.F., Ma, R.X., and Yuan, W.H. (2005). Pilot experiments of magnesia direct electrolysis in a 5KA magnesium reduction cell, Magnesium Technology 2005, Neelameggham, N.R., Kaplan, H.I., and Powell, B.R., ed., TMS, Warrendale, P A, pp. 23-27. [41] Pal, U.B., Woolley, D.E., and Kenney, G.B. (2001). Emerging SOM technology for the green synthesis of metals from oxides, JOM, October, pp. 32-35. [42] Krishnan, A., Lu, X.G., Pal, U.B. (2005). Solid oxide membrane process for magnesium production directly from magnesium oxide, Metall. Mater. Trans. B, 36B, pp. 463-473. [43] Kroll, W.K. (1940). The production of ductile titanium, Trans. Am. Electrochem. Soc., 78, pp. 35-47. [44] Leone, Q.Q. (1967). High-purity titanium electrowon from titanium tetrachloride, Journal of Metals, 19(3), pp. 18-23. [45] Priscu, J.C. (1968). Titanium electrowinning cell, Symposium on Electrometallurgy, Proceedings AIME Extractive Metallurgy Div., Cleveland Ohio, USA, December, pp. 83-91. [46] Cobel, G., Fisher, J., and Snyder, L.E. (1980). Electrowinning of titanium from titanium tetrachloride: pilot plant experience and production plant projections, Titanium ’80: Science and Technology – 4th Inter. Conf. on Titanium, 3, Kimura, H. and Izumi, O., ed., TMS/AIME, Warrendale, Pa., pp. 1969-1976. [47] Ginatta, M.V., Orsello, G., Perotti, P., and Berruti, R. (1988). A newly designed plant for the electrowinning of titanium from molten salts, 6th World Conf. on Titanium, 6th 1988, France, pp. 753-757. [48] Haarberg, G.M., Rolland, W., Sterten, A., and Thonstad, J. (1993). Electrodeposition of titanium from chloride melts, J. Appl. Electrochem., 23, pp. 217-224. [49] Cohen, U. (1977). Some prospective applications of silicon electrodeposition from molten fluorides to solar cell fabrication, J. Electronic Mater., 6 (6), pp. 607-643. [50] Elwell, D. and Feigelson, R.S. (1982). Electrodeposition of solar silicon, Solar Energy Mater., 6, pp. 123-145. [51] Rao, G.M. and Elwell, D. (1983). Electrolytic production of silicon, Light Metals 1983, Adkins, E.M., ed., AIME, Warrendale, PA, pp. 1107-1116. [52] Elwell, D. and Rao, G.M. (1988). Electrolytic production of silicon, J. Appl. Electrochem., 18, pp. 15-22. [53] Olson, J.M., Carleton, K.L. (1984). Process for producing silicon, US Pat. 4,448,651, May 15, 1984. [54] Pistorius, P.C. and Fray, D.J. (2006). Formation of silicon by electro-deoxidation, and implications for titanium metal production, J. South African IMM., 106, pp. 31-41. [55] Bowman, K.A. (1980). Electrolytic purification of metals, US Pat. 4,214,956, Jul. 29, 1980. [56] Schwarz, V. and Wendt, H. (1994). Electrorefining of aluminum scrap from chloride melts, J. Appl. Electrochem., 25, pp. 34-40. [57] Sivilotti, O.G. (1983). Metal production by electrolysis of a molten electrolyte, Eur. Pat. Appl. No. 0 101 243 A2, Aug. 2, 1983. [58] Fray, D.J. (1987). Electrode for electrorefining, Eur. Pat. Appl. No. 0 272 803 A2, Nov. 24, 1987.PDF Image | MOLTEN SALT ELECTROLYSIS
PDF Search Title:
MOLTEN SALT ELECTROLYSISOriginal File Name Searched:
Molten-Salt-Electrolysis-Chapter-6.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |