PDF Publication Title:
Text from PDF Page: 014
7. Papadis, E.; Tsatsaronis, G., Challenges in the decarbonization of the energy sector. Energy 2020, 118025. 8. Glenk, G.; Reichelstein, S., Economics of converting renewable power to hydrogen. Nature Energy 2019, 4 (3), 216-222. 9. Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S., Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy 2017, 42 (52), 30470-30492. 10. Li, X.; Hao, X.; Abudula, A.; Guan, G., Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A 2016, 4 (31), 11973-12000. 11. Zeng, K.; Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy combustion science 2010, 36 (3), 307-326. 12. Buttler, A.; Spliethoff, H., Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable Sustainable Energy Reviews 2018, 82, 2440-2454. 13. Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D., A comprehensive review on PEM water electrolysis. International journal of hydrogen energy 2013, 38 (12), 4901-4934. 14. https://nelhydrogen.com/wp-content/uploads/2020/03/MC100200400-Brochure-Rev-A.pdf. 15. Burdg, J. Infographic: What water type should I use? https://www.labconco.com/articles/water- type- difference#:~:text=Type%20II%20%2D%20ASTM%20defines%20Type,not%20ultrapure%20like%20T ype%20I. 16. Red, T. Ultra Pure vs Feed Water, Comparing the 4 Types of Laboratory Water. https://www.technologynetworks.com/immunology/lists/4-types-of-laboratory-water-made-simple- 293547#:~:text=Also%20known%20as%20general%20laboratory,electrical%20ion%20exchange%20(E DI).&text=Water%20is%20passed%20between%20an,membrane%20within%20an%20EDI%20cell. 17. Al-Amshawee, S.; Yunus, M. Y. B. M.; Azoddein, A. A. M.; Hassell, D. G.; Dakhil, I. H.; Hasan, H. A., Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal 2020, 380, 122231. 18. Dresp, S.; Dionigi, F.; Loos, S.; Ferreira de Araujo, J.; Spöri, C.; Gliech, M.; Dau, H.; Strasser, P., Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Advanced Energy Materials 2018, 8 (22), 1800338. 19. Dresp, S. r.; Dionigi, F.; Klingenhof, M.; Strasser, P., Direct electrolytic splitting of seawater: opportunities and challenges. ACS Energy Letters 2019, 4 (4), 933-942. 20. Coro, G.; Trumpy, E., Predicting geographical suitability of geothermal power plants. Journal of Cleaner Production 2020, 267, 121874. 21. Goosen, M.; Mahmoudi, H.; Ghaffour, N., Water desalination using geothermal energy. Energies 2010, 3 (8), 1423-1442. 22. MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H.; Hodgetts, R. Y.; Bakker, J. M.; Vallana, F. M. F.; Simonov, A. N., A roadmap to the ammonia economy. Joule 2020. 23. Tong, W.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R. S.; Strasser, P.; Cowan, A. J.; Farràs, P., Electrolysis of low-grade and saline surface water. Nature Energy 2020, 5 (5), 367-377. 24. Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P., Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9 (9), 962-972. 25. Association, A. M. T., Membrane desalination power usage put in perspective. https://www.amtaorg.com/wp- content/uploads/07_Membrane_Desalination_Power_Usage_Put_In_Perspective.pdf 2016. 26. Ghaffour, N.; Lattemann, S.; Missimer, T.; Ng, K. C.; Sinha, S.; Amy, G., Renewable energy- driven innovative energy-efficient desalination technologies. Applied Energy 2014, 136, 1155-1165. 14PDF Image | Seawater Electrolysis for Hydrogen Production
PDF Search Title:
Seawater Electrolysis for Hydrogen ProductionOriginal File Name Searched:
seawater-electrolysis-for-hydrogen-production.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |