PDF Publication Title:
Text from PDF Page: 015
27. Ghaffour, N.; Missimer, T. M.; Amy, G. L., Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 2013, 309, 197-207. 28. Lattemann, S.; Kennedy, M. D.; Schippers, J. C.; Amy, G., Global desalination situation. Sustainability Science Engineering 2010, 2, 7-39. 29. Shatat, M.; Worall, M.; Riffat, S., Opportunities for solar water desalination worldwide. Sustainable cities society 2013, 9, 67-80. 30. No Water, No Life. https://www.acwapower.com/news/no-water-no-life/. 31. Amy, G.; Ghaffour, N.; Li, Z.; Francis, L.; Linares, R. V.; Missimer, T.; Lattemann, S., Membrane-based seawater desalination: Present and future prospects. Desalination 2017, 401, 16-21. 32. Global Water Intelligence Report, https://www.globalwaterintel.com, (2020-2021). 33. Bank, W., The Role of Desalination in an Increasingly Water-Scarce World. World Bank: 2019. 34. Peterson, D.; Vickers, J.; DeSantis, D., Hydrogen production cost from PEM electrolysis—2019. DOE Hydrogen Fuel Cells Program Record 19009 2020. 35. Gulch, C. Sterling: New reverse osmosis water treatment plant online and ramping up to full production. https://coyotegulch.blog/2013/01/06/sterling-new-reverse-osmosis-water-treatment-plant- online-and-ramping-up-to-full-production/. 36. Kim, Y. M.; Kim, S. J.; Kim, Y. S.; Lee, S.; Kim, I. S.; Kim, J. H., Overview of systems engineering approaches for a large-scale seawater desalination plant with a reverse osmosis network. Desalination 2009, 238 (1-3), 312-332. 37. Harvey, N. J.; Ur Rehman, Z.; Leiknes, T.; Ghaffour, N.; Urakawa, H.; Missimer, T. M., Organic compounds and microbial assessment of a seawater reverse osmosis facility at Tampa Bay Water, USA. Desalination 2020, 496, 114735. 38. https://www.gulp.ie/2020/09/10/what-is-reverse-osmosis/. 39. Jones, E.; Qadir, M.; van Vliet, M. T.; Smakhtin, V.; Kang, S.-m., The state of desalination and brine production: A global outlook. Science of the Total Environment 2019, 657, 1343-1356. 40. Wilf, M.; Awerbuch, L., The guidebook to membrane desalination technology: reverse osmosis, nanofiltration and hybrid systems: process, design, applications and economics. Balaban Desalination Publications: 2007. 41. Im, S. J.; Jeong, S.; Jeong, S.; Jang, A., Techno-economic evaluation of an element-scale forward osmosis-reverse osmosis hybrid process for seawater desalination. Desalination 2020, 476, 114240. 42. Plappally, A., Energy requirements for water production, treatment, end use, reclamation, and disposal. Renewable Sustainable Energy Reviews 2012, 16 (7), 4818-4848. 43. WNA Report, Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources; http://www.world- nuclear.org/uploadedFiles/org/WNA/Publications/Working_Group_Reports/comparison_of_lifecycle.pdf, 2011. 44. Alsayegh, S.; Varjian, R.; Alsalik, Y.; Katsiev, K.; Isimjan, T.; Idriss, H., Methanol Production Using Ultrahigh Concentrated Solar Cells: Hybrid Electrolysis and CO2 Capture. ACS Energy Letters 2020, 5 (2), 540-544. 45. Footprint, C., Country specific electricity grid greenhouse gas emission factors. https://www.carbonfootprint.com/docs/2020_06_emissions_factors_sources_for_2020_electricity_v1_1.p df 2019. 46. Deutz, S.; Bardow, A., Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nature Energy 2021. 47. Installed Electrical Capacity and Electricity Generation of Geothermal Power Plants in Iceland 1969-2019. https://orkustofnun.is/gogn/Talnaefni/OS-2020-T006-01.pdf. 48. Elimelech, M.; Phillip, W. A., The future of seawater desalination: energy, technology, and the environment. Science 2011, 333 (6043), 712-717. 15PDF Image | Seawater Electrolysis for Hydrogen Production
PDF Search Title:
Seawater Electrolysis for Hydrogen ProductionOriginal File Name Searched:
seawater-electrolysis-for-hydrogen-production.pdfDIY PDF Search: Google It | Yahoo | Bing
Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.
CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP |