logo

Zero Gap Electrolysis Cell for Producing Bleach

PDF Publication Title:

Zero Gap Electrolysis Cell for Producing Bleach ( zero-gap-electrolysis-cell-producing-bleach )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 018

Membranes 2022, 12, 602 18 of 18 26. 14:00–17:00 ISO 7393-3:1990. Available online: https://www.iso.org/cms/render/live/fr/sites/isoorg/contents/data/standard/ 01/41/14108.html (accessed on 11 February 2022). 27. Luna-Trujillo, M.; Palma-Goyes, R.; Vazquez-Arenas, J.; Manzo-Robledo, A. Formation of Active Chlorine Species Involving the Higher Oxide MOx+1 on Active Ti/RuO2-IrO2 Anodes: A DEMS Analysis. J. Electroanal. Chem. 2020, 878, 114661. [CrossRef] 28. Zhu, X. Electrochemical Oxidation of Aniline in Sodium Chloride Solution Using a Ti/RuO2 Anode. Int. J. Electrochem. Sci. 2019, 7516–7528. [CrossRef] 29. Lim, T.; Jung, G.Y.; Kim, J.H.; Park, S.O.; Park, J.; Kim, Y.-T.; Kang, S.J.; Jeong, H.Y.; Kwak, S.K.; Joo, S.H. Atomically Dispersed Pt–N4 Sites as Efficient and Selective Electrocatalysts for the Chlorine Evolution Reaction. Nat. Commun. 2020, 11, 412. [CrossRef] 30. Bousbih, S.; Belhadj Ammar, R.; Ben Amar, R.; Dammak, L.; Darragi, F.; Selmane, E. Synthesis and Evaluation of Asymmetric Mesoporous PTFE/Clay Composite Membranes for Textile Wastewater Treatment. Membranes 2021, 11, 850. [CrossRef] [PubMed] 31. Pan, C.; Kou, K.; Jia, Q.; Zhang, Y.; Wu, G.; Ji, T. Improved Thermal Conductivity and Dielectric Properties of HBN/PTFE Composites via Surface Treatment by Silane Coupling Agent. Compos. Part B Eng. 2017, 111, 83–90. [CrossRef] 32. Cao, Y.-C.; Xu, C.; Zou, L.; Scott, K.; Liu, J. A Polytetrafluoroethylene Porous Membrane and Dimethylhexadecylamine Quater- nized Poly (Vinyl Benzyl Chloride) Composite Membrane for Intermediate Temperature Fuel Cells. J. Power Sources 2015, 294, 691–695. [CrossRef] 33. Huang, Z.; Lv, B.; Zhou, L.; Wei, T.; Qin, X.; Shao, Z. Ultra-Thin h-BN Doped High Sulfonation Sulfonated Poly (Ether-Ether- Ketone) of PTFE-Reinforced Proton Exchange Membrane. J. Membr. Sci. 2022, 644, 120099. [CrossRef] 34. Hu, S.; Lozada-Hidalgo, M.; Wang, F.C.; Mishchenko, A.; Schedin, F.; Nair, R.R.; Hill, E.W.; Boukhvalov, D.W.; Katsnelson, M.I.; Dryfe, R.A.W.; et al. Proton Transport through One-Atom-Thick Crystals. Nature 2014, 516, 227–230. [CrossRef] [PubMed] 35. Yufei, W.; Wang, S.; Xiao, M.; Han, D.; Hickner, M.; Meng, Y. Layer-by-Layer Self-Assembly of PDDA/PSS-SPFEK Composite Membrane with Low Vanadium Permeability for Vanadium Redox Flow Battery. RSC Adv. 2013, 3, 15467. [CrossRef] 36. NafionTM Products|NafionTM Membranes, Dispersions, Resins. Available online: https://www.nafion.com/en/products (accessed on 20 January 2022). 37. ASTOM > Exchange Membrane. Available online: http://www.astom-corp.jp/en/product/10.html (accessed on 20 January 2022). 38. Park, J.-S.; Chilcott, T.C.; Coster, H.; Moon, S. Characterization of BSA-Fouling of Ion-Exchange Membrane Systems Using a Subtraction Technique for Lumped Data. J. Membr. Sci. 2005, 246, 137–144. [CrossRef] 39. ASTOM > Ion Exchange Membrane[NEOSEPTA]. Available online: http://www.astom-corp.jp/en/product/02.html (accessed on 20 January 2022). 40. Długołe ̨cki, P.; Nymeijer, K.; Metz, S.; Wessling, M. Current Status of Ion Exchange Membranes for Power Generation from Salinity Gradients. J. Membr. Sci. 2008, 319, 214–222. [CrossRef] 41. Fujifilm Membranes. Available online: http://www.fujifilmmembranes.com (accessed on 20 January 2022). 42. Sarapulova, V.; Shkorkina, I.; Mareev, S.; Pismenskaya, N.; Kononenko, N.; Larchet, C.; Dammak, L.; Nikonenko, V. Trans- port Characteristics of Fujifilm Ion-Exchange Membranes as Compared to Homogeneous Membranes AMX and CMX and to Heterogeneous Membranes MK-40 and MA-41. Membranes 2019, 9, 84. [CrossRef] [PubMed] 43. Rodríguez, J.; Palmas, S.; Sánchez-Molina, M.; Amores, E.; Mais, L.; Campana, R. Simple and Precise Approach for Determination of Ohmic Contribution of Diaphragms in Alkaline Water Electrolysis. Membranes 2019, 9, 129. [CrossRef] [PubMed] 44. Gaudichet-Maurin, E.; Thominette, F. Ageing of Polysulfone Ultrafiltration Membranes in Contact with Bleach Solutions. J. Membr. Sci. 2006, 1–2, 198–204. [CrossRef] 45. Prulho, R.; Therias, S.; Rivaton, A.; Gardette, J.L. Ageing of Polyethersulfone/Polyvinylpyrrolidone Blends in Contact with Bleach Water. Polym. Degrad. Stab. 2013, 98, 1164–1172. [CrossRef] 46. Garcia-Vasquez, W.; Ghalloussi, R.; Dammak, L.; Larchet, C.; Nikonenko, V.; Grande, D. Structure and Properties of Heterogeneous and Homogeneous Ion-Exchange Membranes Subjected to Ageing in Sodium Hypochlorite. J. Membr. Sci. 2014, 452, 104–116. [CrossRef]

PDF Image | Zero Gap Electrolysis Cell for Producing Bleach

zero-gap-electrolysis-cell-producing-bleach-018

PDF Search Title:

Zero Gap Electrolysis Cell for Producing Bleach

Original File Name Searched:

membranes-12-00602.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP