logo

Zero Gap Electrolysis Cell for Producing Bleach

PDF Publication Title:

Zero Gap Electrolysis Cell for Producing Bleach ( zero-gap-electrolysis-cell-producing-bleach )

Previous Page View | Next Page View | Return to Search List

Text from PDF Page: 017

Membranes 2022, 12, 602 17 of 18 References 1. Brinkmann, T.; Giner Santonja, G.; Schorcht, F.; Roudier, S.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for the Production of Chlor-Alkali. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control). Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC91156 (accessed on 7 April 2022). 2. Smith, R. Chlorine-Advanced Commercial Chlor-Alkali Technology. 2012; Volume 13. Available online: https://ihsmarkit.com/ pdf/RP61E-toc_174229110917062932.pdf (accessed on 1 June 2022). 3. Zubi, S.H.A.; Alkareem, H.A.A.; Elwerfalli, A.J.O. Chlor- Alkali Production by Electrochemical Process; Volume 118. Available online: https://bsu.edu.ly/book/Chlor-%20Alkali%20production%20by%20electrochemical%20process--CHE.pdf (accessed on 7 April 2022). 4. Karlsson, R.K.B.; Cornell, A. Selectivity between Oxygen and Chlorine Evolution in the Chlor-Alkali and Chlorate Processes. Chem. Rev. 2016, 116, 2982–3028. [CrossRef] 5. Kim, S.K.; Shin, D.-M.; Rhim, J.W. Designing a High-Efficiency Hypochlorite Ion Generation System by Combining Cation Exchange Membrane Aided Electrolysis with Chlorine Gas Recovery Stream. J. Membr. Sci. 2021, 630, 119318. [CrossRef] 6. Paidar, M.; Fateev, V.; Bouzek, K. Membrane Electrolysis—History, Current Status and Perspective. Electrochim. Acta 2016, 209, 737–756. [CrossRef] 7. US-4432860-A—Porous Diaphragm for Electrolytic Cell|Unified Patents. Available online: https://portal.unifiedpatents.com/ patents/patent/US-4432860-A (accessed on 7 April 2022). 8. Delmas, F. Production de Chlore et de Soude Par Le Procédé à Membrane Échangeuse d’ions. J. Phys. IV Proc. 1994, 4, C1-223–C1-232. [CrossRef] 9. Li, K.; Fan, Q.; Chuai, H.; Liu, H.; Zhang, S.; Ma, X. Revisiting Chlor-Alkali Electrolyzers: From Materials to Devices. Trans. Tianjin Univ. 2021, 27, 202–216. [CrossRef] 10. Mohammadi, S.; Ebadi, T. Production of a Water Disinfectant by Membrane Electrolysis of Brine Solution and Evaluation of Its Quality Change during the Storage Time. Arab. J. Chem. 2021, 14, 102925. [CrossRef] 11. Ullmann’s Encyclopedia of Industrial Chemistry, 40 Volume Set, 7th Edition|Wiley. Available online: https://www.wiley. com/en-gb/Ullmann%27s+Encyclopedia+of+Industrial+Chemistry%2C+40+Volume+Set%2C+7th+Edition-p-9783527329434 (accessed on 7 April 2022). 12. Haverkort, J.W.; Rajaei, H. Voltage Losses in Zero-Gap Alkaline Water Electrolysis. J. Power Sources 2021, 497, 229864. [CrossRef] 13. Ohmic Resistance in Zero Gap Alkaline Electrolysis with a Zirfon Diaphragm-ScienceDirect. Available online: https://www. sciencedirect.com/science/article/pii/S0013468620320776 (accessed on 28 February 2022). 14. Électrodes. Available online: https://www.techniques-ingenieur.fr/base-documentaire/procedes-chimie-bio-agro-th2/reacteurs- chimiques-42330210/cellules-d-electrolyse-chlore-soude-j4804/electrodes-j4804niv10006.html (accessed on 7 April 2022). 15. Adamson, A.; Lever, B.; Stones, W. The Production of Hypochlorite by Direct Electrolysis of Sea Water: Electrode Materials and Design of Cells for the Process. J. Appl. Chem. 2007, 13, 483–495. [CrossRef] 16. Van der Stegen, J.H.G.; van der Veen, A.J.; Weerdenburg, H.; Hogendoorn, J.A.; Versteeg, G.F. Application of the Maxwell–Stefan Theory to the Transport in Ion-Selective Membranes Used in the Chloralkali Electrolysis Process. Chem. Eng. Sci. 1999, 54, 2501–2511. [CrossRef] 17. Liao, L.; Chen, W.; Xiao, X. The Generation and Inactivation Mechanism of Oxidation-Reduction Potential of Electrolyzed Oxidizing Water. J. Food Eng. 2007, 78, 1326–1332. [CrossRef] 18. Madaeni, S.S.; Kazemi, V. Treatment of Saturated Brine in Chlor-Alkali Process Using Membranes. Sep. Purif. Technol. 2008, 61, 68–74. [CrossRef] 19. Isidro, J.; Brackemeyer, D.; Sáez, C.; Llanos, J.; Lobato, J.; Cañizares, P.; Matthée, T.; Rodrigo, M.A. Testing the Use of Cells Equipped with Solid Polymer Electrolytes for Electro-Disinfection. Sci. Total Environ. 2020, 725, 138379. [CrossRef] [PubMed] 20. Motupally, S.; Mah, D.T.; Freire, F.J.; Weidner, J.W. Recycling Chlorine from Hydrogen Chloride: A New and Economical Electrolytic Process. Electrochem. Soc. Interface 1998, 7, 32. [CrossRef] 21. Morimoto, T.; Suzuki, K.; Matsubara, T.; Yoshida, N. Oxygen Reduction Electrode in Brine Electrolysis. Electrochim. Acta 2000, 45, 4257–4262. [CrossRef] 22. Woltering, P.; Hofmann, P.; Funck, F.; Kiefer, R.; Baeumer, U.-S.; Donst, D.; Schmitt, C. Energy-saving chlorine production. Chlor-alkali electrolysis using innovative cathode technology; Energiesparende Chlorpoduktion. Chlor-Alkali-Elektrolyse mit innovativer Kathoden-Technologie. ThyssenKrupp Techforum 2013, 18–23. Available online: https://worldwidescience.org/ topicpages/c/chlorine+alkali+electrolysis.html (accessed on 11 February 2022). 23. Hou, M.; Chen, L.; Guo, Z.; Dong, X.; Wang, Y.; Xia, Y. A Clean and Membrane-Free Chlor-Alkali Process with Decoupled Cl2 and H2/NaOH Production. Nat. Commun. 2018, 9, 438. [CrossRef] [PubMed] 24. Ghalloussi, R.; Garcia-Vasquez, W.; Bellakhal, N.; Larchet, C.; Dammak, L.; Huguet, P.; Grande, D. Ageing of Ion-Exchange Membranes Used in Electrodialysis: Investigation of Static Parameters, Electrolyte Permeability and Tensile Strength. Sep. Purif. Technol.—SEP Purif. Technol. 2011, 80, 270–275. [CrossRef] 25. Torabiyan, A.; Nabi Bidhendi, G.R.; Mehrdadi, N.; Javadi, K. Application of Nano-Electrode Platinum (Pt) and Nano-Wire Titanium (Ti) for Increasing Electrical Energy Generation in Microbial Fuel Cells of Synthetic Wastewater with Carbon Source (Acetate). Int. J. Environ. Res. 2014, 8, 453–460. [CrossRef]

PDF Image | Zero Gap Electrolysis Cell for Producing Bleach

zero-gap-electrolysis-cell-producing-bleach-017

PDF Search Title:

Zero Gap Electrolysis Cell for Producing Bleach

Original File Name Searched:

membranes-12-00602.pdf

DIY PDF Search: Google It | Yahoo | Bing

Salgenx Redox Flow Battery Technology: Power up your energy storage game with Salgenx Salt Water Battery. With its advanced technology, the flow battery provides reliable, scalable, and sustainable energy storage for utility-scale projects. Upgrade to a Salgenx flow battery today and take control of your energy future.

CONTACT TEL: 608-238-6001 Email: greg@salgenx.com | RSS | AMP